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General Linear Modeling (GLM) is the most commonly used method for signal
detection in Functional Magnetic Resonance Imaging (fMRI) experiments, despite its
main limitation of not taking into consideration common spatial dependencies between
voxels. Multivariate analysis methods, such as Generalized Canonical Correlation
Analysis (gCCA), have been increasingly employed in fMRI data analysis, due to their
ability to overcome this limitation. This study, evaluates the improvement of sensitivity
of the GLM, by applying gCCA to fMRI data after standard preprocessing steps.
Data from a block-design fMRI experiment was used, where 25 healthy volunteers
completed two action observation tasks at 1.5T. Whole brain analysis results indicated
that the application of gCCA resulted in significantly higher intensity of activation in
several regions in both tasks and helped reveal activation in the primary somatosensory
and ventral premotor area, theoretically known to become engaged during action
observation. In subject-level ROI analyses, gCCA improved the signal to noise ratio
in the averaged timeseries in each preselected ROI, and resulted in increased extent
of activation, although peak intensity was considerably higher in just two of them. In
conclusion, gCCA is a promising method for improving the sensitivity of conventional
statistical modeling in task related fMRI experiments.

Keywords: task-related fMRI, signal sensitivity, fMRI, gCCA method, action observation, signal intensity

INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is one of the most popular methods for detecting
systematic changes in regional brain activity during the performance of cognitive tasks. Brain
activity is measured by detecting local changes of Blood Oxygenation Level Dependent (BOLD)
signal which originates from systematic variations in blood oxygenation levels over time, typically
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between periods of active engagement in a given task and
periods of rest or engagement in a comparison (reference
or baseline) task.

Various statistical methods have been used to detect these
signal variations, with General Linear Model (GLM) being one
of the most popular. GLM statistical analysis is performed
independently for each voxel and therefore is univariate.
A univariate method, such as GLM, assumes neighboring voxels
to be independent, without taking into consideration the spatial
covariance structure of each voxel. An inherent limitation of
GLM is that it does not take into account commonly occurring
spatial dependencies between voxels (Zarahn et al., 1997). Spatial
smoothing is typically applied to overcome this limitation which,
in turn, may obscure smaller activity sources (Yang et al., 2018).

Multivariate analysis methods are being increasingly
employed for fMRI data analysis, which can take into account
multiple sources of variability simultaneously, including
Independent Component Analysis (ICA; Calhoun et al., 2009),
sparse Partial Least Squares (PLS) regression (Monteiro et al.,
2015) and Canonical Correlation Analysis (CCA). The latter
was first introduced by Hotelling (1936), and was designed to
describe linear associations between two random variables so that
their cross-correlation is maximized, and can be considered as a
multivariate extension of the GLM (Thompson, 2005). Variants
of CCA have been proposed to overcome crucial limitations
of ordinary CCA, mainly poor specificity (Friman et al., 2001;
Nandy and Cordes, 2004). One of these algorithms is generalized
CCA (gCCA; Kettenring, 1971), a method applicable to more
than two random vectors.

Both CCA and gCCA have been applied to fMRI data analysis.
Friman et al. (2001) used CCA to successfully detect homogenous
maps of the brain by combining subspace modeling of the
expected task-related hemodynamic response and estimation of
local spatial dependencies. Li et al. (2009) applied gCCA to
multiple fMRI datasets in an attempt to separate distinct temporal
sources within each dataset and to describe the correlation
profiles of each source across different datasets. In contrast,
Afshin-Pour et al. (2012) highlighted the possibility that several
subjects may share an unknown spatial response (or spatial map)
to a specific experimental manipulation, but may show different
temporal responses. In a previous report (Karakasis et al., 2020),
a two-stage gCCA method was introduced for single-task multi-
subject fMRI analysis, under the assumption of a common task-
related set of spatial and temporal responses. The goal of this
approach is to capture the basic features of the fMRI signal by
taking into consideration both the common task-related spatial
component and the common spatial components associated
with ongoing, background activity. The proposed realization of
gCCA computes the common task-related temporal component
to derive an estimate of the associated common task-related
spatial component and construct the respective activation map.

The goal of the present work was to explore the capacity
of an unsupervised method for signal processing in improving
the sensitivity of conventional statistical modeling of block-
design task-related fMRI data. This approach relies on gCCA
applied to the data after standard preprocessing steps (co-
registration to MNI space, anatomic normalization, band-pass

filtering/detrending, motion correction, and spatial smoothing).
To demonstrate the potential utility of the gCCA algorithm we
applied it to data from a previous fMRI experiment of action
observation (Savaki et al., 2021). Specifically, we used data from
two tasks identical in all design and stimulus characteristics
with the exception of the precise kinematics of the observed
action. Reference blocks involved observation of a static snapshot
from the action clip presented during the “active” blocks, to
further reduce visual differences between active and reference
blocks (no decision or response was required from participants
throughout the task). Initially, whole-brain activation maps were
obtained by applying the standard GL model to (i) fMRI data
submitted to conventional preprocessing and (ii) conventional
preprocessing followed by gCCA. To characterize the effect of
gCCA in more detail, we also extracted data on the extent
and degree of estimated activation from first-level (person-
specific) T-maps focusing on four key regions of the brain
network known to be involved in action observation (Simos
et al., 2017; Savaki et al., 2021). These regions were selected
based on three additional criteria: (1) they cover both posterior
(occipitotemporal and postcentral gyrus) and anterior sections of
the brain (dorsolateral prefrontal), (2) they include both sensory
processing (extrastriate visual and primary somatosensory) and
motor representation cortex (dorsal and ventral premotor) areas,
and (3) they display a wide range of signal intensities based on
our earlier experiment on action observation (strong signal in
occipitotemporal and dorsal premotor, and weaker, more variable
signal across participants in ventral premotor and primary
somatosensory cortex).

MATERIALS AND METHODS

Participants
Functional Magnetic Resonance Imaging data were obtained
from 25 healthy adults (mean age = 28.4, SD = 4.3 years; 11
men) without history of neurological or psychiatric disorder,
sensory or motor deficit (convenience sample recruited through
ads posted in the Voutes campus of the University of Crete).
They all had normal or corrected to normal vision and provided
written consent in accordance to the declaration of Helsinki.
The study was approved by the Ethics Committees of (i) the
University Hospital of Crete and (ii) the Foundation for Research
and Technology – Hellas (FORTH).

Stimuli and Tasks
Participants completed two passive, action observation tasks,
which were identical in all respects with the exception of the
specific kinematic characteristics of the observed action. Each
task comprised four “active” 35 s blocks, alternating with four
35 s baseline blocks. A video clip illustrating a two-movement
action sequence was presented 6 times within each “active” block.
The stimulus set-up was identical across blocks and conditions,
presenting a female person sitting behind a table. A white tea cup
was positioned on the table and a ceramic bowl 30 cm in diameter
was located on a smaller table right next to the person’s head.
The “Fast to cup – Slow to person” condition (fs-P) consisted of
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a rapid grasping movement toward the tea cup (time duration
equal to 1,400 ms and average velocity equal to 0:36 m/sec),
followed by a much slower movement that brings the cup to the
person’s mouth (time duration equal to 4,033 ms and average
velocity equal to 0:12 m/sec). The “Slow to cup – Fast to person”
condition (sf-P) consisted of a slow grasping movement toward
the tea cup (time duration equal to 4,033 ms and average velocity
equal to 0:12 m/sec), followed by a much faster movement that
brings the cup to the person’s mouth (time duration equal to
1,400 ms and average velocity equal to 0:36 m/sec). Clip duration
was always 5,433 ms, with a 400 ms blank screen between
successive repetitions of each clip. The stimulus in the static
baseline blocks consisted of the first frame of the corresponding
video clip, which was repeated six times (duration = 5,433 ms)
interspersed with a 400 ms blank screen. In both experiments
a white cross for fixation remained on the screen for the entire
duration of the recording, with the exception of a 3 s period
between blocks during which a blank screen was presented to
allow participants to move their eyes freely and blink if needed.
Participants were asked to keep fixating the cross when appeared
on the screen, and keep their hands resting on their stomach.
Additional details on the stimuli and task can be found in Savaki
et al. (2021).

Image Acquisition and Conventional
Preprocessing
Functional Magnetic Resonance Imaging data were acquired
using an upgraded 1.5T Siemens Vision/Sonata scanner
(Erlangen, Germany) with powerful gradients (Gradient
strength: 45 mT/m, Gradient slew rate: 200 mT/m/ms) and a
standard four channel head array coil. For the BOLD-fMRI, a
T2∗-weighted, fat saturated 2D-FID-EPI sequence was used with
the following parameters: repetition time (TR) 3,500 ms, echo
time (TE) 50 ms, field of view (FOV) 192 × 192 × 108 mm (x;
y; z), acquisition voxel size 3 × 3 × 3 mm. Whole brain scans
consisted of 36 transverse slices with 3.0- mm slice thickness
and no interslice gap. The timeseries recorded in each condition
comprised 80 volumes (time points), with 40 volumes recorded
during observation of repeated person-directed action and 40
volumes recorded during observation of a static hand. The first
5 volumes of each time-series were ignored in the analyses as is
customary in fMRI studies.

Additionally, high resolution anatomical images were
acquired sagittally, using a 3D magnetization-prepared rapid
acquisition gradient echo sequence (3D-MPRAGE) with
the following parameters: TR 9.8 ms, TE 4.6 ms, flip angle
8 deg, inversion time (TI) 922 ms, FOV 180 × 230 (x; z),
with acquisition voxel size of 0.98 × 0.98 (x; z) and slice
thickness of 1 mm.

Image preprocessing was performed in SPM12. Initially, EPI
scans were spatially realigned to the first image of the first time-
series using second-degree B-spline interpolation algorithms
and motion-corrected through rigid body transformations
(three translations and three rotations about each axis). Next,
images were spatially normalized to a common brain space
(MNI template), smoothed using an isotropic Gaussian filter

(FWHM = 8 mm), and high pass filtered with a time
constant of 128 s.

Additional Preprocessing Using
Generalized Canonical Correlation
Analysis
In a previous report of ours (Karakasis et al., 2020), a
generative model was proposed which takes into account the
common task-related spatial and temporal responses, as well
as the common spatial responses that are related to the
background hemodynamic activity attributed to resting state
networks. Specifically, under the setting of a task-related multi-
subject experiment, the aforementioned model assumes that
the recordings of each subject can be expressed as a linear
superposition of three groups of components. The first group
comprises the spatial and temporal responses to the experimental
stimuli and are assumed to be common across different subjects
up to possibly different intensities. The second group expresses
the spatial and temporal responses that are attributed to the
existence of resting state networks. The model assumes that these
responses have common, across subjects, manifestations in space,
under the assumption of common spatially organized resting
state networks, while the temporal responses of these networks
may vary across subjects. Finally, the third group captures the
uncommon responses of each participant, which do not belong
to the first two groups and can be considered as (strong) additive
noise, independent across participants.

In earlier work gCCA had been successfully applied in
estimating a linear subspace which is “common” to a collection
of sets of random variables (Ibrahim and Sidiropoulos, 2019) and
latter applied to estimate a basis of the subspace that is spanned
by the common spatial responses (task-related or not; Karakasis
et al., 2020). Projecting the fMRI data of all participants onto
this subspace helps to suppress any spatial responses that are
not shared by all participants and, as a result, provides a noise
reduction effect, which could potentially increase the SNR in both
weakly and strongly activated regions. In our previous work and
in the present analyses the gCCA algorithm is supplemented by
a data-driven criterion for estimating the proper dimension for
modeling the common subspace.

Statistical Analyses
The two fMRI datasets (conventionally preprocessed designated
as “original” and conventionally preprocessed followed by
gCCA [“gCCA-processed”] were submitted to a fixed effects
General Linear Model (Friston et al., 1995) separately for
each participant and task. The model included two condition
regressors of interest (active, static). Contrasts of interest (fs-P
or sf-p > the corresponding static baseline) were thresholded at
p < 0.001 uncorrected.

In whole-brain analyses, individual contrast t-value images
were input to the second level random effects analysis to estimate
the generalizability of activations. The main analysis involved
one-sample t-tests (s-f to person vs. static baseline and f-s
to person vs. static baseline). Supplementary analyses involved
pairwise comparisons of resulting contrast maps between original
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and gCCA-processed data, separately for each task. Second level
activations were assessed for statistical significance by applying a
threshold of p < 0.05 with family wise error (FWE) correction
for multiple comparisons at the cluster level, with an initial
voxel-wise threshold of p = 0.001. Monte Carlo simulation
(Slotnick, 2017) was applied when necessary (in cases where
voxel clusters were smaller than the minimum number required
to obtain FWE-adjusted significance of p < 0.05) using the
estimated smoothness of our functional data (10 mm). This
resulted in a minimal cluster size of 58 voxels at a threshold
of p < 0.001 uncorrected to achieve correction for multiple
comparisons for p < 0.05. Anatomic identification of active
clusters was performed using the SPM Anatomy Toolbox (v2.2;
Eickhoff et al., 2004).

In region-specific analyses, we computed the extent of
activation (number of voxels exceeding a fixed criterion of
p < 0.01 uncorrected) and peak activation (T value) in four ROIs
where significant, activation clusters were found and which are
known to serve as key regions of the brain network involved in
action observation (Savaki and Raos, 2019). These masks were
manually drawn using the WFU PickAtlas toolbox, taking care to
constrain them within the anatomical borders of the following
regions in the Automated Anatomical labeling atlas (Tzourio-
Mazoyer et al., 2002): (1) Extrastriate Body Area (EBA; comprised
of Brodmann’s area [BA] 37), (2) primary somatosensory area (SI,
BA 2/3), (3) dorsal premotor area (PMd, BA 6), and (4) ventral
premotor area (PMv; BA 6). Areas EBA, PMd, and PMv were
drawn in the right hemisphere and area SI in the left hemisphere
where the effect of action observation on activation was greatest

in our previous work (Simos et al., 2017; Savaki et al., 2021). The
effect of the additional processing through gCCA on the degree
and/or extent of activation in each of the four ROIs was assessed
through repeated measures ANOVAs with task (sf-P, fs-P), ROI
(EBA, SI, PMd, PMv), and data set (original vs. gCCA-processed)
as within-subjects variables.

Finally, the effect of the gCCA algorithm on the specificity
of activations was estimated by computing the extent of active
voxels (at p < 0.01 uncorrected in first-level maps) and peak
activation (T values) within a whole-brain, inclusive mask of
CSF and white matter. Additionally, SNR was estimated for
the original and gCCA-processed timeseries, averaged across all
voxels within the aforementioned ROIs. SNR was estimated as
the ratio of the mean signal of the fMRI timeseries across all
voxels within a given ROI divided by the standard deviation of the
average timeseries across all voxels within a large manually drawn
region encompassing periventricular white matter bilaterally
(same across participants, using the WFU PickAtlas tool). In this
manner the estimated noise signal reflected both equipment and
physiological noise.

RESULTS

Whole-Brain, Group-Level Analyses
Coordinates of significant activity clusters found in second-level
whole-brain analyses (positive contrast at p < 0.05 corrected)
and corresponding T values for original and gCCA-processed
data are shown in Tables 1, 2 (Group-level T maps for original

TABLE 1 | MNI coordinates and T values of significant activations in whole-brain second-level analyses during observation of Slow-fast to Person action comparing
original vs. gCCA-processed data.

Original gCCA-processed Original < gCCA-processed

Brain area BA H x y z T x y z T

EBA/MT 37 L −50 −72 6 10.98 −48 −72 6 12.50 9.11

EBA/MT 37 R 46 −64 8 11.72 50 −62 6 14.63 7.78

ITG/FG 37 L −42 −80 −6 7.30 −46 −74 −6 9.90 4.47

ITG/FG 37 R 70 −70 −6 7.70 50 −66 −10 10.47 4.04

SPL 7 L −18 −64 56 4.86 −20 −58 60 9.56 7.06

SPL 7 R 28 −58 60 6.29 20 −58 60 10.40 –

IPLd 40 L −26 −40 54 6.33 −36 −42 60 8.88 5.58

IPLd 40 R 32 −40 56 7.12 28 −48 58 10.80 6.29

IPLv 40 L −52 −38 28 4.90 −50 −36 30 6.60 3.50

TPj 40 R 61 −38 18 8.22 62 −40 20 10.61 –

SI 3 L – – – – −50 −26 32 5.40

SI 3 R – – – – 46 −28 38 8.30 3.80

PMd 6 L −26 −6 64 4.31a
−22 −4 62 9.70 –

PMd 6 R 40 −4 58 6.58 36 −4 58 8.10 4.48

PMv 6 L – – – – −46 −2 42 5.10 –

PMv 6 R 42 8 24 5.15a 42 6 30 6.58 –

SMA 6 L 0 −2 58 4.67 −6 0 60 4.55 –

SMA 6 R 14 2 60 6.02 6 4 66 4.24 –

IFG 47 R – – – – 52 32 2 4.60 –

IFG 45 R – – – – 54 18 24 5.30 –

MFG 9/10 L – – – – −34 44 24 4.68 –
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and gCCA-processed data are shown in Figures 1, 2). Inspection
of group-level T values indicates that gCCA-processed data
produced either similar (in 4 regions in the sf-P and in 5 regions
in the fs-P task) or considerably higher degree of activation in
several regions (in 11 regions in the sf-P and in 9 regions in the
fs-P task). Significant activation clusters were found only in the
gCCA-processed data in 7 and 6 regions, respectively. Whole-
brain paired t-tests confirmed that the task vs. static baseline
contrast values were significantly higher in the gCCA-processed
as compared to the original data in 10 and 9 regions for the
sf-P and fs-P tasks, respectively. It should be noted that gCCA-
processed < original comparisons did not reach significance,
although the corresponding one-sample T values were slightly
different, in the following areas: SMA bilaterally (sF-P task), right
EBA, right IPLv, and left SI (Fs-P task).

Negative contrasts were also computed in each dataset
(i.e., deactivations indicated by sf-P or fs-p < static baseline
differences). One-sample T maps featured sparse deactivations in
both tasks and datasets, which did not show systematic anatomic
distributions. Moreover, paired sample contrasts did not reveal
significant effects of data set (gCCA-processed vs. original) for
either task, even at a more liberal threshold of p < 0.001
uncorrected with a smaller extent threshold of 20 voxels.

Significant activity clusters in WM, and primarily in CSF,
were found in 11/25 participants in the gCCA-processed data

(meanvoxels = 16.7, SDvoxels = 32.9, range = 0–149, meanT = 1.6;
SDT = 1.9, range = 0–5.1) but only in one participant in
the original data (22 voxels, T = 3.6). However, this notable
increase in active extracortical voxels was not associated with a
corresponding increase of SNR in key cortical ROIs (r < 0.1).

Single-Task, Individual Activation Maps
Significantly greater extent of activation was noted in each of the
four preselected ROIs as indicated by a main effect of dataset
(original, gCCA-processed), F(1,24) = 12.69, p = 0.002 (see
Figure 3). The effect of dataset on peak intensity varied across
ROIs as indicated by a significant dataset by ROI interaction,
F(3,72) = 20.62, p < 0.001. Simple main effect tests (evaluated at
Bonferroni-adjusted p < 0.0125) revealed higher T values in the
gCCA-processed dataset in EBA, F(1,24) = 33.83, p < 0.001, and
PMv, F(1,24) = 8.45, p = 0.008. On average, T values increased
by 28.1% (SD = 5.1%) in PMv, 8.9% (SD = 2.2%) in EBA, and
12.4% (SD = 1.9%) in SI, and remained unchanged in PMd
(mean = −0.2%, SD = 13.1%).

Moreover, the likelihood of obtaining significant clusters in
a given ROI was slightly higher in the gCCA-processed data as
compared to the original data in PMv (20/25 [both tasks] vs.
15/25 in the fs-P and 17/25 participants in the sf-P, respectively)
and SI (in the sf-P task only: 18/25 vs. 22/25 participants,
respectively). In the remaining ROIs the frequency of significant

TABLE 2 | MNI coordinates and T values of significant activations in whole-brain second-level analyses during observation of Fast-Slow to Person action comparing
original vs. gCCA-processed data.

Original gCCA-processed Original < gCCA-processed

Brain area BA H x y z T x y z T T

EBA 37 L −50 −72 4 9.14 −46 −74 0 13.33 7.66

EBA 37 R 50 −66 4 14.66 50 −66 4 13.34 –

ITG/FG 37 L −50 −70 −12 6.51 −46 −74 −8 10.17 4.40

ITG/FG 37 R 50 −68 −12 7.62 50 −64 −10 10.90 4.67

SPL 7 L −32 −50 56 6.67 −18 −56 60 9.56 5.37

SPL 7 R 22 −54 60 7.24 24 −52 60 11.98 5.86

IPLd 40 L −32 −48 56 7.24 −26 −44 56 9.50 5.56

IPLd 40 R 34 −50 58 6.49 32 −48 56 11.13 5.78

IPLv 40 L −54 −30 34 6.41 −58 −30 30 5.55 –

TPj 40 R 60 −38 18 6.86 60 −44 18 9.22 –

SI 3 L −48 −26 36 7.66 −54 −24 38 5.95 –

SI 3 R – – – – 32 −30 46 9.60 4.32

PMd 6 L −34 −8 52 6.82 −26 2 48 7.00 –

PMd 6 R 36 −4 48 6.72 30 −12 58 10.30 5.08

PMv 6 L −60 6 28 6.35a
−40 −8 38 7.50 –

PMv 6 R – – – – 40 0 36 6.68 –

SMA 6 L – – – – – – – – –

SMA 6 R – – – – – – – – –

IFG 47 R – – – – 40 40 −10 5.31 –

IFG 45 R – – – – 46 26 14 5.32 –

MFG 9/10 L – – – – −50 10 30 3.60 –

MFG 9/10 R – – – – 46 10 34 5.37 –

Abbreviations for Tables 1 and 2; EBA, extrastriate body area; ITG, inferior temporal gyrus; FG, fusiform gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; d,
dorsal; v, ventral; TPj, temporoparietal junction; SI, primary somatosensory area; PM, premotor cortex; SMA, supplementary motor area; IFG; inferior frontal gyrus; MFG,
middle frontal gyrus; BA, Brodmann’s area; H, hemisphere; L, left; R, right; FEW p < 0.05 corrected. aSignificant activation after Monte Carlo simulation (threshold > 58
voxels). No voxels exceeded p > 0.05 uncorrected, for original > gCCA-processed. Significant voxel clusters in primary and secondary visual cortices are not shown.
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FIGURE 1 | Group-level T maps of activation during observation of a slow to cup-fast to person action compared to the static reference blocks. Upper panel: data
submitted to conventional preprocessing only; lower panel: data submitted to conventional preprocessing followed by gCCA. Arrows point to the four ROIs selected
for region-specific analyses at the subject level (EBA: Extrastriate Body Area, PMd: dorsal Premotor area, PMv: ventral Premotor area, SI: primary somatosensory
area).
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FIGURE 2 | Group-level T maps of activation during observation of a fast to cup-slow to person action compared to the static reference blocks. Upper panel: data
submitted to conventional preprocessing only; lower panel: data submitted to conventional preprocessing followed by gCCA. Arrows point to the four ROIs selected
for region-specific analyses at the subject level (EBA: Extrastriate Body Area, PMd: dorsal Premotor area, PMv: ventral Premotor area, SI: primary somatosensory
area).
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FIGURE 3 | Average extent of activation (upper panel) and peak T values
(lower panel) of activity clusters in four selected ROIs (Extrastriate body area
[EBA], dorsal premotor area [PMd], ventral premotor area [PMv] in the right
hemisphere, and left primary somatosensory area [SI]). Shades of blue
represent data from the original dataset and green shades gCCA-processed
data. Brackets indicate significant differences at p < 0.001 (upper panel, main
effect of dataset) or p < 0.0125 (lower panel, Bonferroni-adjusted simple main
effects). Vertical bars represent standard error. fs-P: Fast-Slow to Person,
sf-P: Slow-Fast to Person.

clusters was very similar between datasets. On average, cluster
extent increased by 381.3% (SD = 59.0%) in PMd, 409.3%
(SD = 62.5%) in PMv, 614.5% (SD = 89.4%) in EBA, and 547.5%
(SD = 77.6%) in SI.

These results were accompanied by an average increase
of 62% in SNR in each of the four ROIs (across tasks).
Specifically, average SNR in PMd was 168.7 (SD = 52.2) in the
gCCA-processed and 106.1 (SD = 31.7) in the original data.
Corresponding values in PMv were: 170.2 (SD = 52.8) and 106.4
(SD = 29.2); in EBA: 180.3 (SD = 58.3) and 112.8 (SD = 32.8);
and in SI: 166.7 (SD = 51.3) and 104.3 (SD = 28.7). However,
individual differences in SNR improvement following gCCA did

not correlate significantly with percent change in either peak T
value or extent of activation (r < 0.2).

DISCUSSION

In this study we explored the potential utility of an unsupervised
multivariate method in improving the sensitivity of the
conventional GLM to detect systematic BOLD changes in
block-design fMRI experiments. Specifically, we used fMRI
data from two tasks involving action observation known to
activate a complex network of distributed brain regions in both
hemispheres. The selected tasks were virtually identical in timing
parameters and response requirements: both involving passive
observation of a motor act executed by a third person. In
this manner, background, resting brain activity was reinforced,
given that gCCA models components related to continuous,
resting-state as well as task-related BOLD responses. Conversely,
reference blocks involved (passive) observation of a visual
stimulus (common to both tasks) depicting the initial frame of the
action presented in the “active” blocks. In this manner, perceptual
and cognitive differences between reference and “active” blocks
were kept at a minimum to ensure that activated regions would
be largely restricted to those involved in action observation per se.
While some of these regions (such as EBA, SPL, PMd) are known
to display very robust activation during action observation, other
purportedly crucial regions of the network (such as SI, PMv,
and IFG) typically display weak and variable activation across
participants. This expectation was corroborated by our second
level, whole-brain results as indicated relatively small one-sample
T-test values (Tables 1, 2). In sum, the present study was designed
to explore the limits of gCCA to facilitate detection of weak task-
related activity while, in conjunction with conventional GLM,
maintaining the activations associated with resting neuronal
activity at a minimum.

Whole-brain analyses support the specificity of gCCA-derived
GLM results given that we did not detect activity clusters outside
the broad network of regions known to be involved in action
observation. The anatomic overlap between the two analyses is
restricted to regions comprising this network. Importantly, the
overlapping regions shown in Tables 1, 2 are virtually identical
across tasks, further supporting the reliability of the proposed
method. Extrastriate visual cortices are known to be involved in
visual processing of both static and moving body parts (EBA;
Filimon et al., 2007; Gazzola and Keysers, 2009); the primary
somatosensory (hand area in the postcentral gyrus) may be
involved in mapping effector-related properties of an observed
action (Keysers et al., 2004) and related predictions; cortex
in the superior parietal lobule may contribute to estimations
related to visuomotor integration (Barany et al., 2014); inferior
parietal regions could be involved in gesture representation
(Sirigu et al., 1999) whereas adjacent TPj in body knowledge
(Van Overwalle and Baetens, 2009); activity clusters were
found in the dorsolateral (PMd) and mediodorsal premotor
cortices (SMA), which are also crucial components of the
sensorimotor system responsible for overt action execution, in
agreement with previous meta-analyses (Caspers et al., 2010;
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Molenberghs et al., 2012). Finally, activity clusters were found in
the ventral premotor and adjacent inferior and middle frontal
gyri, which are potentially involved in specifying action intension
(Becchio et al., 2008). In general, the anatomy of jointly activated
areas across tasks observed in the present study is in agreement
with the notion of a common network underlying the recognition
of transitive, intransitive, and meaningless gestures independent
of their type in humans (Villarreal et al., 2008) and non-human
primates (Savaki, 2010; Savaki and Raos, 2019). Additional active
voxels were detected in 11/25 participants but they were located
in non-cerebral regions (subcortical white matter and, primarily,
in ventricles), rather than in brain regions typically linked to
known resting-state functional networks (e.g., Yeo et al., 2011).
This spurious activity was likely represented by one or more of the
common spatial subspace dimensions estimated through gCCA,
which survived the purely data-driven method used to estimate
the optimal number of spatial dimensions to retain in the gCCA-
processed data. Thus, in future studies using the gCCA algorithm
it is advisable to ensure that any spatial components showing
significant (e.g., >50%) overlap with a CSF mask are excluded
prior to reconstructing the voxel time-series.

The present results further support the added value of
gCCA in improving the sensitivity of GLM. In whole-brain
analyses this claim is supported by three sets of findings: Firstly,
significant clusters of activity were detected, following gCCA, in
two additional regions which have been proposed by previous
studies and theoretical accounts to become engaged during
action observation: the hand representation in the right primary
somatosensory cortex and the right inferior frontal gyrus (BA
45). Secondly, direct comparisons between original (obtained
through conventional preprocessing) and gCCA-processed data
revealed significantly higher intensity of activation in the latter
in several regions of the action observation network, 8 of
which were common to both tasks (left EBA and SPL, right
SI and PMd, bilateral ITG/FG and IPLd). The opposite trend
(original > gCCA) was not observed in any region. Thirdly, direct
comparisons of the two datasets on activation parameters in
four representative ROIs revealed that the gCCA-processed data
provided more robust activity clusters in less strongly activated
regions (namely the right PMv and left SI) as indicated by greater
extent of activation at the single-subject level. Interestingly,
increased extent of activation of subject-specific clusters in the
left SI was accompanied by significant enhancement of peak
activation in the group-level analyses, although this was not
the case for the right PMv. This failure probably illustrates
the limits of the current implementation of gCCA in cases of
activity clusters that are very weak and/or anatomically variable
across participants.

A final note is in place regarding the effect of gCCA on
peak cluster activations at the subject level. The current ROI-
based analyses indicate that the contribution of gCCA on peak
activation intensity was less pronounced than its effect on
the corresponding extent of activation, as it was documented
only for EBA and PMv clusters. Taken together our findings
suggest that gCCA may serve as a useful step in fMRI data
preprocessing, especially in less salient activation conditions,
in order to identify and measure cluster activation parameters

in certain areas of interest. The proposed model takes into
account the common task-related spatial and temporal responses,
as well as the common spatial responses that are related to
the resting state networks. Within the gCCA framework, one
can estimate a basis that spans the subspace of all common
spatial responses (task-related or not). Moreover, this step can
help suppress all the non-common spatial responses which
are not represented by the derived components. In effect
gCCA serves as a noise reduction tool that increases SNR
in weakly (as well as in strongly) activated regions. The
substantial improvement in SNR of the BOLD signal recorded
in key brain regions in the present study is consistent with
the notion that application of gCCA can help to effectively
reduce the non-common sources of both physiological and
instrument noise [as estimated by the temporal variability of
the recorded signal in extracortical regions (cerebral white
matter)]. It should be noted, however, that the behavior of gCCA
in handling specific sources of noise, such as head motion,
remains to be demonstrated in future analyses. Finally, the
decision to apply gCCA should be weighted against the necessary
compromise between sensitivity and specificity, which largely
depends upon the nature of the specific research questions and
experimental task(s) employed in a given study (Lieberman and
Cunningham, 2009). The task of the present experiment was
designed to reveal activations associated with cognitive processes,
therefore subtler in comparison to sensorimotor activations; thus,
high sensitivity was more preferable compared to specificity.
Moreover, the anatomic layout of cerebral activations was largely
known based on extensive prior work, so that potentially
spurious cortical activations could be identified. Conversely,
in tasks where high specificity is desirable and the anatomic
layout of activations is not very well defined from prior
work, the use of conventional GLM preprocessing might be a
more appropriate, yet conservative approach to ensure optimal
reliability of the results.

In conclusion, the present experimental results present a
promising method for improving the sensitivity of the GLM
to detect significant activity clusters in statistical method
analysis, with only modest reduction in specificity (activations
in areas outside the purported brain network involved in action
observation). The results presented here constitute a basis for
future studies in order to assess the impact of the proposed
method in other experimental contexts, including various event-
related designs. Application of gCCA to data derived from tasks
that require a motor response and, therefore, are expected to
produce much more robust sensorimotor neuronal activity, is
also forthcoming to examine whether this method has a similar
impact on SNR and task-related activation in these brain regions.
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