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Chapter 1

Introduction

Functional magnetic resonance imaging or functional MRI (fMRI) is a non-invasive func-

tional neuroimaging procedure that measures brain activity by detecting changes associated

with blood flow, over time. It relies on the fact that cerebral blood flow and neuronal ac-

tivation are coupled since, when neural activity increases in an brain area, the metabolic

demands in this area rise. Thus, the vascular system concentrates oxygen (oxygenated

hemoglobin) into the area.

In fMRI, a brain is represented by a finite set of volume elements (voxels). For each

voxel, we have a time series that indicates the concentration of oxygen in this area over

time. These time series are known as blood oxygenation level dependent (BOLD) signals.

The purpose of task-based fMRI data analysis is to determine which brain areas are acti-

vated when a specific task is performed, based on the BOLD signals analysis. Hence, brain

activation maps related to specific tasks can be obtained. This procedure is very useful

for understanding how the human brain works. Also, the study of how brain activations

maps, as well as how activation time patterns change over different trials, can be used for

diagnostic purposes. For example, fMRI could provide an in vivo means to investigate al-

terations in brain function related to the earliest symptoms of Alzheimer’s disease, possibly

before development of significant irreversible structural damage.

The BOLD signal of a voxel corresponds to oxygenation changes that are not only

related to the specific task that we study but also to irrelevant factors. Thus, in order to

isolate the signals that we are interested in, we can consider the problem of fMRI data

analysis as a blind source separation problem (BSS). BSS refers to the problem of extracting

a set of source signals from a set of mixed signals, without using prior information (or with
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Figure 1.1: An example of fMRI data [1]

.

very little prior information) about the source signals or the mixing process. The classical

example of a source separation problem is the cocktail party problem, where a number

of people are talking simultaneously in a room (for example, at a cocktail party) and

a listener is trying to follow one of the discussions. The human brain can handle this

sort of auditory source separation problem, but this is a difficult problem in digital signal

processing. Hence, BSS aims in enhancing noisy speech in real world environments and

the applications are not just limited to speech/audio processing but also include topics in

astronomical, satellite, econometric, and biomedical signal processing.
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Figure 1.2: Abstract view of the BSS problem.

BSS problems are, in general, highly under-determined, since lack of prior knowledge

(number of sources, characteristics of the source signals and the mixing procedure) may

lead to a set of multiple solutions for the same problem. A variety of methods in addressing

the BSS problem have been proposed in the literature. The most popular of them, among

others, are principal component analysis (PCA), independent compontent analysis (ICA),

nonnegative matrix factorization (NMF), as well as tensor factorization methods.
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Tensors are mathematical objects that have recently gained great popularity due to

their ability to model multi-way (multidimensional) data dependencies [2], [3], [4]. Tensors

often offer more natural representations of data. For example, consider a video recording,

which consists of frequently correlated images over time. Tensor factorization (or decom-

position) into latent factors is very important for numerous tasks, such as BSS, feature

selection, dimensionality reduction, multiway clustering, data visualization and interpre-

tation, and others. The Canonical Decomposition or Canonical Polyadic Decomposition

(CANDECOMP or CPD), also known as Parallel Factor Analysis (PARAFAC), and the

Tucker decomposition are the two most widely used tensor factorization models.

1.1 Purpose

In this report, we focus on how tensor factorization models can be used in BSS problems

and particularly for task-based multi-subject fMRI data analysis. We begin by presenting

the matrix factorization problem in the framework of BSS problems. Then, we introduce

the problem of tensor factorization under the PARAFAC and PARAFAC2 models and we

examine their adequacy for fMRI data analysis, by applying them to real-world fMRI data

collected at the University of Crete. Unfortunately, after extensive efforts, we concluded

that classical tensor factorization methods do not seem very suitable for processing real-

world data fMRI. The main reason for this seems to be the high sensitivity of these methods

to the unknown tensor rank.

Thus, we tried another approach based on canonical correlation analysis (CCA). The

first results are very encouraging. The derived method is very stable and offers very

informative fMRI maps.

1.2 Notation

Scalars are denoted by small letters, vectors, matrices, and tensors are denoted by small,

capital, and calligraphic capital bold letters, respectively; for example, x, x, X, and X .

Sets are denoted by blackboard bold capital letter; for example, U. Specifically, Z, R, and

C denote the sets of integer, real, and complex numbers, respectively. R+ denotes the

set of real nonnegative numbers, while R∗ denotes the set of nonzero real numbers. RI×J

denotes the set of (I × J) real matrices. RI×J
+ denotes the set of (I × J) real nonnegative
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matrices. CI×J denotes the set of (I × J) complex matrices. RI×J×K denotes the set of

(I×J ×K) real tensors. RI×J×K
+ denotes the set of (I×J ×K) real tensors. ‖·‖F denotes

the Frobenius norm of the tensor or matrix argument. Inequality A ≥ 0 means that matrix

A has nonnegative elements. The transpose, conjugate, and hermitian matrices of a matrix

A are denoted by AT , A∗, and AH , respectively. The outer product of two vectors a and

b is denoted as a ◦ b (see Definition 3.2.1), the Kronecker product of two matrices A and

B is denoted as A⊗B (see Definition 3.2.2), and the Khatri-Rao product of two matrices

A and B is denoted as A ~ B (see Definition 3.2.3). Finally, we introduce some Matlab

style notations. A:,l and Ak,: denote the lth column and and the kth row of a matrix A,

respectively.

1.3 Report Outline

The report is organized as follows:

• In Chapter 2, we present the matrix factorization model in the context of BSS prob-

lems and fMRI data analysis.

• In Chapter 3, we present the PARAFAC and PARAFAC2 models in the framework

of multi-subject fMRI data analysis.

• In Chapter 4, we consider the problem of common component extraction via means

of canonical correlation analysis. As we shall explain in detail, this approach leads

to a very effective data processing and is very promising.

• Finally, in Chapter 5, we conclude the report and describe future research directions.
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Chapter 2

Matrix Factorization Models

2.1 Introduction

W:,1

ST:,1

W:,2

ST:,2

W:,D

ST:,D

X =
D∑
i=1

Figure 2.1: Factorization of X in rank-one component matrices.

The main subject of this chapter is the factorization of a matrix X ∈ RN×T into a pair of

matrices W ∈ RN×D and S ∈ RT×D, where D ≤ min {N, T}, such that

X = WST . (2.1)

Matrix factorization (MF) can be employed in many applications, since factors W and

S may have different interpretations across different frameworks [3]. In a blind source

separation problem (BSS), matrix W plays the role of mixing matrix, while matrix S

expresses the source signals. Specifically, the d-th column of matrix S expresses the time

course of the d-th source signal and d-th column of matrix W expresses the intensity in
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which the d-th source appears to sensors, since

X =
D∑
d=1

W:,dS
T
:,d =

D∑
d=1

W:,d ◦ S:,d, (2.2)

where ◦ denotes the outer product of two vectors. Thus, each column of X is reconstructed

using a linear combination of the basis elements (columns of W).

In general, MF is more complicated. In many cases of BSS, for example, the number of

sources d is unknown. Even if the number of sources D were known, there exist more than

one pairs of W and S matrices that fulfill equation (2.1). Specifically, for every invertible

matrix Π ∈ RD×D, if we define W′ = WΠ and S′ = SΠ−T , then

W′S′T = WΠΠ−1ST = WST = X. (2.3)

From here on, we will refer to this ambiguity as rotation ambiguity.1 Also, for every α ∈ R∗,
let W′ = αW and S′ = 1

α
S. Then

W′S′T = αW
1

a
ST = WST = X. (2.4)

From here on, we will refer to this ambiguity as scalar scaling ambiguity. Therefore, given

a matrix X and the number of sources D, recovering matrices W and S is not trivial and

further assumptions are required in order to obtain a unique factorization of X.

Consider now a BSS problem where the columns of X correspond to measurements in

different time instances. In this case, we make three implicit assumptions when we select

the MF model. The first is that the mixing process is linear, the second is that the mixing

matrix W is time invariant, and the third is that all signals arrive at the sensors at the

same time, i.e. without relative delays. In the scope of this report, we study how the MF

models can be used for BSS problems under these three assumptions.

2.2 Matrix Factorization Models in fMRI data anal-

ysis

In fMRI, the brain of a subject is represented by a finite set of volume elements (voxels).

For each voxel, a time series is recorded, during the session, measuring the concentration

1A rigorous definition of the rotation ambiguity would require matrix Π to be orthogonal, i.e. ΠΠT =

ΠTΠ = I.
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Figure 2.2: Visual example of a rank-one matrix produced by vectors w and s.

of oxygen in this area over a finite (most often equispaced) set of time points. Hence, fMRI

data appear in the form of a four-dimensional array (a fourth-order tensor, as we define

in the next chapter), where the first three indices are in correspondence with the spatial

coordinates of each voxel, while the fourth index expresses the time domain.

Usually, in fMRI data analysis, the spatial arrangement of the voxels is ignored. Specif-

ically, there exist methods that attempt to define which voxels can be characterized as acti-

vated in a voxel-wise fashion, where the presence or the absence of activation are defined by

a statistical test. These methods are known as univariate methods. Unlike the univariate

methods, multivariate methods provide statistical inference about the whole brain so as to

express brain responses in terms of spatial and temporal patterns [5]. Matrix factorization

constitutes the basis of many popular multivariate methods, such as Principal Component

Analysis (PCA) and Independent Component Analysis (ICA). In MF-based methods, the

four-dimensional array is unfolded to the form of a matrix X ∈ RV×T , where V denotes

the total number of voxels and T the number of time points. Specifically, by letting vector

xj ∈ RT denote the time series of the j-th voxel, a matrix X can be formed as

X =


xT1
...

xTv

 . (2.5)

Therefore, by considering each brain voxel as a sensor, a full correspondence with the BSS
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framework, as developed in the previous section, emerges, where the MF model can be

deployed.

In task-related fMRI experiments, the set of all rank-one components resulting from

the factorization of the data matrix can be divided into two categories. The first category

contains all rank-one components that are relevant to the task, while the second contains

the remaining rank-one components. Thus, a model for this scenario is

X = Xs + Xb = Ws [Ss]
T + Wb [Sb]

T = [Ws Wb] [Ss Sb]
T , (2.6)

where term Xs is used to express the superposition of all task-evoked spatiotemporal

responses, while term Xb expresses the remaining signals that emerge from, irrelevant to

the task, background activities. In this setting, one may assume that the different types

of stimuli constituting the task are connected with different rank-one components, thereby

the number of different types of stimuli is implicitly given by the number of columns of

matrix Ws and by extension of matrix Ss.

Unfortunately, due to the ambiguities concerning that MF model, finding a unique

(up to scaling and permutation) set of matrices Ws, Ss, Wb, and Sb that would explain

matrix X requires prior information to be taken into account, which most of the times is

not available. In the next chapter, we discuss how and under which circumstances these

difficulties can be circumvented when instead of a matrix X a set of matrices is available.
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Chapter 3

Tensor Factorization Models

3.1 Introduction

In many scientific areas, such as signal processing, neuroimaging, chemometrics, and others,

data appear as multidimensional arrays. In this chapter, we study how multidimensional

arrays (or tensors) can be processed in order to reveal their hidden structure or patterns

across different dimensions. The terms way and order are used, interchangeably in this

report, to express each dimension of an array. In case of arrays in vector form, we have

one-way array, in case of data in matrix form, we have two-way data, etc. In this report,

we focus on three-way tensors, but the models we discuss can be extended to higher-way

tensors. An important advantage that comes with multi-way factorization models is the

existence of tensor decomposition models that do not inherit the rotation ambiguity of the

MF model and offer unique decompositions, when some mild conditions hold.

Two-way factorization methods, namely MF models, can be applied to multi-way data

processing after reshaping data in a two-way form. However, in this case, data-internal

relations become corrupted, as the multidimensional structure is flattened. Another way

to apply a two-way factorization model is averaging along trials. This choice makes sense

only under the assumption that noise in data is uncorrelated, otherwise information would

be lost in the aggregation of correlated noise. Nevertheless, making this choice bring back

up the uniqueness issues of matrix factorization.

The two most popular factorization models for N -way tensors are the Tucker model and

the more restricted PARAFAC model. In this report, we focus on the PARAFAC model.

The reason for this choice is that the PARAFAC model comes with theoretical background
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that guarantees unique factorizations (up to scaling and permutation) of multi-linear arrays

when some mild conditions are satisfied. Another reason is related to the interpretabil-

ity of the resulting decomposition, since complicated multidimensional patterns can be

decomposed to collections of one dimensional features/components under the PARAFAC

model.

In this chapter, we introduce the PARAFAC and the PARAFAC2 models and show

how they can be used in BSS problems when a set of realizations of the same BSS problem

is available. As in the previous chapter, we assume that the mixing process is linear, the

mixing matrix is time invariant, and that there are no propagation delays between sources

and sensors. Additionally, we assume that the source signals and the mixing matrix are

realization invariant. As we discuss later, this assumption can be relaxed by passing from

the PARAFAC model to the PARAFAC2 model, when some conditions hold. Next, we

demonstrate how the PARAFAC and the PARAFAC2 models can be exploited in the

context of fMRI data analysis. At last, we propose a new tensor decomposition model for

task-related multi-subject fMRI data analysis.

3.2 Definitions

Definition 3.2.1 Let a ∈ RN , b ∈ RP , and c ∈ RJ . The outer product of a and b is

defined as the rank-one matrix with elements

[a ◦ b]n,p = anbp, (3.1)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P}, and the outer product of a, b and c is defined as

the rank-one tensor with elements

[a ◦ b ◦ c]n,p,j = anbpcj, (3.2)

for all n ∈ {1, . . . , N}, p ∈ {1, . . . , P} , and j ∈ {1, . . . , J} .

Definition 3.2.2 Let A ∈ RN×M and B ∈ RP×K. The Kronecker product (or ten-

sor product) of A and B is defined as the matrix

A⊗B =


A1,1B · · · A1,MB

...
. . .

...

AN,1B · · · AN,MB

 ∈ RNP×MK . (3.3)
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Definition 3.2.3 Let A ∈ RN×M and B ∈ RP×M . The Khatri-Rao product of A and

B is defined as the matrix

A ~ B =
[
A:,1 ⊗B:,1 · · · A:,M−1 ⊗B:,M−1 A:,M ⊗B:,M

]
. (3.4)

Definition 3.2.4 Let X ∈ RI×J×K, A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . We define

the rank of X as the minimum integer positive number F such that

X =
F∑
f=1

A:,f ◦B:,f ◦C:,f . (3.5)

3.3 The PARAFAC model

Consider a collection of K realizations of a BSS problem where, for each realization, a

matrix of recordings from N sensors and over T time instances, Xk ∈ RN×T , is obtained,

for k = 1, . . . , K. This collection of K matrices forms a three-way tensor X ∈ RK×N×T .

When the total number of sourcesD is not greater than min (KN,NT, TK), the PARAFAC

or CP decomposition of tensor X can be employed in order to investigate the underlying

problem, which is given by

X k,n,t =
D∑
d=1

Ak,dWn,dSt,d, (3.6)

for all k ∈ {1, . . . , K}, n ∈ {1, . . . , N}, and t ∈ {1, . . . , T}, where A ∈ RK×D expresses the

realization variability, W ∈ RN×D expresses the mixing matrix, and S ∈ RM×D expresses

the source signals. Relation (3.6) can also be expressed as

X = JA,W,SK =
D∑
d=1

A:,d ◦W:,d ◦ S:,d. (3.7)

As can be seen, using the PARAFAC model in BSS problems presupposes that the mixing

matrix W and the source matrix S are invariant across realizations. Then, Ak,d expresses

the contribution of the rank-one matrix W:,d ◦ S:,d in the kth realization. Physical inter-

pretation of matrix A is related with the framework under which the realizations happen.

For instance, in biomedical BSS applications, each realization may correspond to different

subjects or different trials.
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The PARAFAC model with constrained factors

For completeness, we mention that the factorization problem of a nonnegative tensor X ∈
RK×N×T

+ using the PARAFAC model into a set of nonnegative factor matrices, i.e.

X = JA,W,SK =
D∑
d=1

A:,d ◦W:,d ◦ S:,d, (3.8)

where A ∈ RK×D
+ , W ∈ RN×D

+ and S ∈ RT×D
+ is called nonnegative tensor factorization

problem (NTF).

Another interesting case of constrained tensor factorization is the case of the PARAFAC

model with unimodal orthogonality constraints, where a tensor X ∈ RK×N×T admits the

PARAFAC decomposition with factor matrices A ∈ RK×D, W ∈ RN×D, and S ∈ RT×D,

i.e. X = JA,W,SK, where one of the factors (for example factor W) also satisfies column-

wise orthogonality constraints (namely WTW = ID).

3.3.1 Estimation of the Factor Matrices

Let a tensor X o ∈ RK×N×T admit the PARAFAC factorization form

X o = JAo,Wo,SoK =
D∑
d=1

Ao
:,d ◦Wo

:,d ◦ So:,d, (3.9)

where matrices Ao ∈ RK×D, Wo ∈ RN×D, and So ∈ RT×D. We observe the noisy tensor

X = X o + E , where E is additive noise. Estimates of Ao,Wo, and So can be obtained

by computing matrices A ∈ RK×D,W ∈ RN×D,S ∈ RT×D that solve the optimization

problem

minimize
A, W, S

fX (A,W,S) , (3.10)

where fX is a function measuring the quality of the factorization. A common choice for

fX is

fX (A,W,S) =
1

2
‖X − JA,W,SK‖2F . (3.11)

If X = JA,W,SK, then its matrix unfoldings, with respect to the first, second, and third

dimension, are given by [3]

X(1) = A (S ~ W)T , X(2) = W (S ~ A)T , X(3) = S (W ~ A)T . (3.12)
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Thus, fX can be expressed as

fX (A,W,S) =
1

2

∥∥∥X(1) −A (S ~ W)T
∥∥∥2
F

=
1

2

∥∥∥X(2) −W (S ~ A)T
∥∥∥2
F

=
1

2

∥∥∥X(3) − S (W ~ A)T
∥∥∥2
F
.

(3.13)

These expressions form the basis for tensor factorization via alternating optimization (AO)

in the sense that, if we fix two matrix factors, then we can update the third by solving a

least-squares problem of the forms

minimize
A

1

2

∥∥∥X(1) −A (S ~ W)T
∥∥∥2
F
, (3.14)

minimize
W

1

2

∥∥∥X(2) −W (S ~ A)T
∥∥∥2
F
, (3.15)

minimize
S

1

2

∥∥∥X(3) − S (W ~ A)T
∥∥∥2
F
, (3.16)

respectively.

For the case of NTF, the nonnegative factors can be estimated by solving the con-

strained optimization problem

minimize
A≥0, W≥0, S≥0

fX (A,W,S) . (3.17)

Based on the unfolding equations (3.12) and the expressions of fX in (3.13), an AO proce-

dure can be employed, in which a sequence of nonnegative least-squares (NNLS) problems

minimize
A≥0

1

2

∥∥∥X(1) −A (S ~ W)T
∥∥∥2
F
, (3.18)

minimize
W≥0

1

2

∥∥∥X(2) −W (S ~ A)T
∥∥∥2
F
, (3.19)

minimize
S≥0

1

2

∥∥∥X(3) − S (W ~ A)T
∥∥∥2
F
, (3.20)

will be solved.

At last, when we are interested in solving the PARAFAC model with unimodal or-

thogonality constraints (w.l.o.g let matrix W be that factor), estimates of the parameter

matrices A, W and S can be obtained by solving the constrained optimization problem

minimize
A, W, S

fX (A,W,S)

subject to WTW = ID.
(3.21)
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As in the previous cases, an AO procedure can be employed for solving a sequence of

least-squares problems

minimize
A

1

2

∥∥∥X(1) −A (S ~ W)T
∥∥∥2
F
, (3.22)

minimize
W

1

2

∥∥∥X(2) −W (S ~ A)T
∥∥∥2
F

subject to WTW = ID,

(3.23)

minimize
S

1

2

∥∥∥X(3) − S (W ~ A)T
∥∥∥2
F
, (3.24)

respectively. The constrained least-squares problem in (3.23) is known as the orthogonal

Procrustes problem and it has a closed-form solution as we show in the sequel.

The Orthogonal Procrustes problem

Let Y ∈ RN×T , A ∈ RN×D and X ∈ RT×D. We consider the optimization problem

minimize
A

fOP (A) :=
∥∥Y −AXT

∥∥2
F

subject to ATA = ID.
(3.25)

Then, the optimal solution Â for this problem is given by setting

Â = UVT , (3.26)

where matrices U ∈ RN×D and V ∈ RD×D are given by the singular value decomposition

of matrix M = YX = UΣVT .
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Proof :

Â = argmin
A

∥∥Y −AXT
∥∥2
F

= argmin
A

Tr
((

Y −AXT
)T (

Y −AXT
))

AT A=I
= argmin

A
‖X‖2F + ‖Y‖2F − 2Tr

(
YTAXT

)
= argmax

A
Tr
(
XTYTA

)
YX=UΣVT

= argmax
A

Tr
(
VΣUTA

)
= argmax

A
Tr
(
ΣUTAV

)
A=ULVT

= U

(
argmax

L
Tr (ΣL)

)
VT

= U

(
argmax

L

D∑
i=1

Σi,iLi,i

)
VT .

(3.27)

Since we require ATA = ID, this implies that LTL = ID ⇒
D∑
k=1

L2
k,i = 1 ∀ i ∈ {1, . . . , D}

⇒ Li,i ≤ 1 ∀ i ∈ {1, . . . , D}. Also, we know that Σi,i ≥ 0 ∀ i ∈ {1, . . . , D}. Thus, quantity

D∑
i=1

Σi,iLi,i (3.28)

achieves the maximum for L = ID and we conclude that the optimal solution is Â = UVT .

3.3.2 Degeneracy and Uniqueness

The problem of finding a best rank-D approximation for third-order tensors has no solution,

in general. There exists A ∈ Rd1×d2×d3 such that

inf
∥∥A− q

U(1),U(2),U(3)
y∥∥ (3.29)

is not attained by any choice of matrices U(1), U(2), U(3). It is also, in general, not possible

to determine a priori if a given A ∈ RI1×I2×I3 will fail to have a best rank-D approximation

[6]. Moreover, such failures can occur with positive probability and in some cases with

certainty, i.e. where the infimum in (3.29) is never attained. This phenomenon is called

PARAFAC degeneracy. Roughly speaking, it refers to solutions in which some component
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loadings are highly correlated in all modes and the elements of these components become

arbitrarily large [7]. PARAFAC degeneracy makes the estimation unstable, the algorithm

slow to converge (or even diverge), and the result difficult to interpret, largely because the

model is plagued by strong inter-component cancellations.

Assume that for a tensor X ∈ RI1×I2×I3 there exists a solution of the PARAFAC model,

i.e. X =
q
U(1),U(2),U(3)

y
with U(j) ∈ RIj×D′

, for j = 1, . . . , 3. Then, this solution is

unique (up to scaling and permutation), when [8]

3∑
j=1

kU(j) ≥ 2D′ + 2, (3.30)

where D′ is the rank of the tensor and kY is the Kruskal rank of a matrix Y, denoting

the largest number of columns of Y that is guaranteed to be linearly independent. Thus,

kY ≤ rank (Y).

When one models the data using a low rank approximation (D < D′), the above

criterion guarantees that the residuals are uniquely defined [9], which leads to essential

uniqueness. If A =
q
U(1),U(2),U(3)

y
, then essential uniqueness means that U(1),U(2),

and U(3) are unique up to a common permutation and scaling/counter-scaling of columns,

i.e. there exists a permutation matrix Π and diagonal scaling matrices Λ1, Λ2, and Λ3

such that

Û(1) = U(1)ΠΛ1, Û(2) = U(2)ΠΛ2, Û(3) = U(3)ΠΛ3,

Λ1Λ2Λ3 = I, A =
r
Û(1), Û(2), Û(3)

z
.

The condition (3.10) is sufficient but not necessary for essential uniqueness. This condition

does not hold when D′ = 1. It is also necessary for D′ = 2 and D′ = 3 but not for D′ > 3

[10, 8]. In the presence of noise, if tensor A for a rank-D does not belong to the degeneration

class, all matrices U(1),U(2), and U(3) will have full rank and uniqueness is guaranteed by

proofs given in [11] and [12].

In constrast to the unconstrained PARAFAC model, there exist cases where imposing

constraints on the factor matrices can guarantee the existence of an optimal solution, hence

degeneration phenomena are fully eliminated. In the case of tensor factorization model

(NTF), for any nonnegative tensor A ∈ Rd1×d2×d3
+ and any given D ∈ N, a best nonnegative

rank-D approximation always exists (up to scaling and permutation) in the sense that the

infimum in relation (3.9) is attained by some nonnegative tensors
∑D

d=1 U
(1)
:,d ◦U

(2)
:,d ◦U

(3)
:,d
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[6]. In [13], Theorem 2 states that if one of the factor matrices A,W,S is constrained to

be column-wise orthonormal, then there exists an optimal solution which can be unique

under more relaxed conditions than the unconstrained PARAFAC model [10, 14].

Notice that all the above conclusions can be extended, without loss of generality, to

higher order tensors (multi-way tensors) with the appropriate extension of all above rela-

tions.

3.4 The PARAFAC2 model

In the previous section, we introduced the PARAFAC model by considering a collection of

K data matrices, Xk ∈ RN×T for k = 1, . . . , K, that correspond to different realizations of

a BSS problem and all together form a three-way tensor X ∈ RK×N×T . By letting tensor

X to admit the PARAFAC model, each matrix Xk can be expressed as

Xk = WDkST , (3.31)

where Dk = diag (Ak,:), for k = 1, . . . , K.

In the PARAFAC2 model, one of the factor matrices is allowed to vary across different

slices. For example, choosing factors A and W to be invariant across different slices results

into expressing matrices Xk as

Xk = WDk
[
Sk
]T
, (3.32)

where Dk = diag (Ak,:) and Sk ∈ RT×D, for k = 1, . . . , K. Notice that solving the

PARAFAC2 model for tensor X , in the above setting, is equivalent to solving the fol-

lowing MF problem

[
X1 . . . XK

]
= W


H1

...

HK


T

, (3.33)

where Hk = SkDk, for k = 1, . . . , K. Hence, the ambiguities concerning the uniqueness

issues of the MF model reappear by passing from the PARAFAC model to the PARAFAC2

model.

In order to maintain the uniqueness properties of the PARAFAC model, it has been

proposed to add equality constraints among the cross products
[
Sk
]T

Sk. In [15], the

authors show that this is equivalent to letting

Sk = BkR, (3.34)
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where each matrix Bk is column-wise orthonormal (i.e.
[
Bk
]T

Bk = ID, for k = 1, . . . , K).

Under this set of constraints, relation (3.32) can be rewritten as

Yk = XkBk = WDkRT , (3.35)

which coincides with the PARAFAC model for the tensor that is formed from matrices Yk.

3.5 Tensor factorization models in fMRI data analysis

Figure 3.1: Visual example of a rank one tensor produced by vectors a, w and s.

Tensor factorization models have recently attract the interest of many researchers in

the area of fMRI data analysis. In 2004, Andersen and Rayens demonstrated how the

PARAFAC (CP) model is useful in the analysis of multi-subject/trial neuroimaging data

including task-based fMRI data [16]. Specifically, they proposed to fit the PARAFAC

model to the third order tensor X ∈ RK×N×T that is formed from the collection of the

matricized data (see Chapter 2) of K different subjects/trials. However, degeneration of

the unconstrained PARAFAC model is a frequent problem in the analysis of fMRI data.

The same framework was adopted in later proposals, where additional factor constraints

were considered. Such proposals, include the tensor PICA model [17], where the ICA model

is extended for tensors, as an attempt to increase the robustness of the PARAFAC model

and the PARAFAC model with orthogonality constraints over the spatial mode (matrix

factor W), in order to reduce cross-talk (overlap) between different spatial components and
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eliminate degeneration phenomena. Also, imposing nonnegativity constraints on factor A

(subject/trial variability) is a common practice that aims to improve the interpretability

of the resulting factors.

Tensor factorization models have been also proposed for analyzing multi-subject resting-

state fMRI data. Specifically, the authors in [18] propose the fitting of the PARAFAC2

model to the multi-subject data tensor, where the temporal factor Sk varies across sub-

jects, while the cross products
[
Sk
]T

Sk are constrained to be equal. They conclude that

PARAFAC2 model is a viable framework for modeling subject variability while, at the

same time, identifying consistent and generalizable functional connectivity networks.

3.6 A new model

While functional connectivity networks are often extracted from resting-state fMRI scans,

they have been shown to be active during task performance as well [19, 20, 21]. Thus,

considering the PARAFAC model seems inappropriate, since components that are related

the functional connectivity networks are not taken into account. On the other hand, the

terms expressing the responses to the stimuli in a task experiment are not expected to vary

significantly over space and time across subjects.

Therefore, we propose the usage of the model that emerges by combining the PARAFAC

and PARAFAC2 models. Specifically, let {Xk}Kk=1 be a set of matrices, where Xk ∈ RV×T ,

where V denotes the number of voxels, T denotes the number of time points, and K the

number of subjects/trials. Then, the new model takes the form

Xk = Xk
st + Xk

sp = WstD
k
st [Sst]

T + WspD
k
sp

[
Sksp
]T
, k = 1, . . . K, (3.36)

where Dk
c = diag

(
[Ast]k,:

)
and Dk

sp = diag
(

[Asp]k,:

)
. The first term expresses the sig-

nals that emerge as responses to the stimuli of the experimental task, while the second

term expresses the spontaneous signals that emerge from the activation of the functional

connectivity networks.

Of course, the model used in relation (3.36) can be viewed as the PARAFAC2 model

with equality constraints, i.e.

Xk = WtD
k
t

[
Skt
]T

= [Wst Wsp] D
k
t

[
Sst Sksp

]T
, k = 1, . . . K, (3.37)

where Dk
t = diag

([
[Ast]k,: [Asp]k,:

])
.
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Chapter 4

Common Component Extraction via

gCCA

4.1 Introduction

The measured fMRI signal is corrupted by numerous factors as random noise and various

nuisance components related to the hardware, like scanner drift and thermal noise, as well

as the subjects themselves, due to subject motion, respiration and heartbeat [22]. On top

of that, the signal of interest is relatively weak and appears only to a small percentage of

the total number of voxels. As a result, although sophisticated preprocessing methods have

been developed, the task of recovering useful spatio-temporal components from a whole

brain analysis procedure is, at least, challenging.

In this chapter, we focus on recovering components that are common among different

subjects/trials. Specifically, we show how this goal can be stated properly in a mathe-

matical form and achieved effectively, via deploying tools that emerge from the theory of

canonical correlation analysis.

4.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) can be seen as the problem of finding basis vectors

for two sets of variables such that the correlation between the projections of the variables

onto these basis vectors are mutually maximised [23].

Let X1 ∈ RV×t1 and X2 ∈ RV×t2 be two known full column rank data matrices. CCA
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can be defined as the problem of finding two canonical vectors, a1 ∈ Rt1 and a2 ∈ Rt2 ,

such that the canonical variates z1 = X1a1 ∈ RV and z2 = X2a2 ∈ RV are maximally

correlated [24], namely

(a1, a2) = argmax
zT1 z2

‖z1‖2 ‖z2‖2
= argmax

aT1 C12a2√
aT1 C11a1aT2 C22a2

, (4.1)

where Cij = XT
i Xj, for i, j ∈ {1, 2}, are estimates of the within-set and between-set

covariance matrices, respectively. The optimization problem that appears in equation (4.1)

is equivalent to the maximization of q = aT1 C12a2 subject to the constraints aT1 C11a1 =

aT2 C22a2 = 1. The solution to this problem is given by the eigenvector corresponding to

the largest eigenvalue of the following generalized eigenvalue problem [25][
0 C12

C21 0

]
a = q

[
C12 0

0 C22

]
a, (4.2)

where q is the canonical correlation and a =
[
aT1 , a

T
2

]T
is the eigenvector.

4.2.1 Generalization of CCA to several sets (gCCA)

Any generalization of the CCA to several sets has to be equivalent to the CCA in the case

of two sets. Kettenring [26] studied five versions of generalized CCA (gCCA) in which

the pair-wise correlation coefficients are maximized. In this manuscript, we focus on the

version that is known as the maximum variance formulation of the gCCA (MAXVAR).

Specifically, let
{
Xk
}K
k=1

be a set of K full column rank matrices. Then, the MAXVAR

formulation of the gCCA is given by the following optimization problem

min
{Qk}Kk=1,G

K∑
k=1

∥∥XkQk −G
∥∥2
F

s.t. GTG = I.

(4.3)

In the next section, we show how the MAXVAR formulation of gCCA can be used for the

estimation of common subspaces of a given set of matrices.
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4.3 Common Subspace Estimation

Let
{
Xk
}K
k=1

be a set of matrices, where Xk ∈ RN×T , for k ∈ {1, . . . , K}, follow the model

in relations (3.36) and (3.37), namely,

Xk = WtD
k
t

[
Skt
]T
, k = 1, . . . K. (4.4)

In order to simplify the analysis that follows, we assume for now that Dk
t = I, for all

k = 1, . . . K. As we show next, this assumption does not affect the concluding results of

this section. Therefore, let the generator model of matrices
{
Xk
}K
k=1

be

Xk = Wt

[
Skt
]T
, k = 1, . . . K, (4.5)

where Wt ∈ RN×D and Skt ∈ RT×D.

The key observation here is the fact that the column spaces of all matrices Xk coincide,

since span
(
Xk
)

= span (Wt) for all k = 1, . . . K. Let X ∈ RK×N×T be the tensor that

emerges from the set
{
Xk
}K
k=1

and X(2) ∈ RN×KT be the matricization of tensor X with

the respect to the second mode. Then, we obtain

X(2) =
[
X1 . . . XK

]
= Wt


S1
t
...

SKt


T

, (4.6)

which implies that the column space of X(2) will also coincide the span (Wt), since

span
(
X(2)

)
=

K⋃
k=1

span
(
Xk
)

= span (Wt) . (4.7)

Therefore, all matrices
{
Xk
}K
k=1

generate a common subspace, determined by matrix Wt.

Let us now take into consideration the presence of additive noise, namely,

Xk = Wt

[
Skt
]T

+ Ek, k = 1, . . . K. (4.8)

In this case, determining the relations between span
(
Xk
)

and span (Wt) is a difficult

problem due to the existence of the perturbation terms Ek. Employing one of the previously

discussed matrix or tensor factorization models would only guarantee that the estimate of

matrix Wt will belong to the column space of matrix X(2), i.e. to the union of spaces that

are spanned from the columns of each matrix Xk.
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In the sequel, we focus on the problem of estimating the column space of matrix Wt,

span (Wt). Notice that the problem of estimating span (W) is related to the estimation

of a D–dimensional orthonormal basis in RN that generates the same column space with

W, namely span (G) = span (W). Next, we show how solving the optimization problem

(4.24), which arises from the MAXVAR formulation of the gCCA, enables us to calculate

estimates of common subspaces, like span (Wt), from a set of matrices
{
Xk
}K
k=1

.

In order to understand how this optimization problem is linked with our goals, let

matrix G ∈ RN×D be a D dimensional orthonormal basis in RN (GTG = ID), where

span (G) = span (Wt). Then, there exists a matrix Λ ∈ RD×D such that Wt = GΛ. Now,

let

Qk =
[
Skt
]†

Λ−1 = Skt

([
Skt
]T

Skt

)−1
Λ−1. (4.9)

By multiplying each matrix Xk by Qk, respectively, we get

XkQk =
(
Wt

[
Skt
]T

+ Ek
)

Qk

= Wt

[
Skt
]T

Qk + EkQk

= GΛSTkS†kΛ
−1 + EkQk

= G + EkQk

= G + E
′k.

(4.10)

Hence,

XkQk −G = E
′k, for all k = 1, . . . K. (4.11)

After considering the Frobenius norms of the above terms, we can see that finding the

matrices G with GTG = ID and Qk, for all k ∈ {1, . . . , K}, that solve the optimization

problem

min
{Qk}Kk=1,G

K∑
k=1

∥∥XkQk −G
∥∥2
F

s.t. GTG = ID

coincides with the MAXVAR formulation of gCCA (4.24) under the minimum noise energy

assumption.

Also notice that, for all k ∈ {1, . . . , K},

span
(
Skt
)

= span
(
Qk
)

= span
(
Jk
)
, (4.12)
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where Qk = JkUk, with
[
Jk
]T

Jk = ID. Hence, by solving the optimization problem in

relation (4.24) one can obtain estimates about spaces span (Wt) and span
(
Skt
)
, for all

k ∈ {1, . . . , K}, while for the case where D = 1 one can obtain estimates about factors

Wt and Skt , for all k ∈ {1, . . . , K}.

Denoising

In this section, we focus on the practical aspects of why one should be interested in find-

ing spaces span (Wt) and span
(
Skt
)
. One application that is closely related to is noise

reduction, since

GGTXkJk
[
Jk
]T

= GGTWt

[
Skt
]T

Jk
[
Jk
]T

+ GGTEkJk
[
Jk
]T

= Wt

[
Skt
]T

+ GGTEkJ
k
[
Jk
]T
.

(4.13)

Now, we adopt the following definition of signal to noise ratio (SNR)

SNRk =

∥∥∥Wt

[
Skt
]T∥∥∥2

F

‖Ek‖2F
. (4.14)

Since matrix G forms a D–dimensional orthonormal basis in RN , every matrix P ∈ RN×T ,

can be written as P = GGTP + GcomGT
comP, where Gcom is an orthogonal basis for the

orthogonal complement of span(G).

Then, the following equality holds

‖P‖2F =
∥∥GGTP

∥∥2
F

+
∥∥GcomGT

comP
∥∥2
F
. (4.15)

This relation is also valid for P = Ek. Hence,∥∥Ek
∥∥2
F
≥
∥∥GGTEk

∥∥2
F

(4.16)

for all k ∈ {1, . . . , K}. Analogously,∥∥GGTEk
∥∥2
F

=
∥∥∥GGTEkJ

[
Jk
]T∥∥∥2

F
+
∥∥∥GGTEkJkcom

[
Jkcom

]T∥∥∥2
F

≥
∥∥∥GGTEkJ

[
Jk
]T∥∥∥2

F
.

(4.17)

Concluding, we have ∥∥Ek
∥∥2
F
≥
∥∥∥GGTEkJ

[
Jk
]T∥∥∥2

F
, (4.18)

which leads to

SNRk
before projection ≤ SNRk

after projection. (4.19)
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4.4 Common Component Extraction

In this section, we focus on the case where the task-related fMRI experiment of a session

consists of only one type of stimulus. Let
{
Xk
}K
k=1

be a set of data matrices collected

from K participating individuals, where Xk ∈ RN×T , for k ∈ {1, . . . , K}, with N and T

denoting the number of voxels and time instances, respectively. Then, it reasonable to use

for all matrices Xk the model in relation (3.36)

Xk = [ast]k wsts
T
st + WspD

k
sp

[
Sksp
]T
, k = 1, . . . K, (4.20)

where Dk
sp = diag

(
[Asp]k,:

)
. Notice that the prior knowledge about the structure of the

task is encoded in our model by constraining the first term to have rank equal to one.

Assume that the rank of both matrices W = [wst Wsp] and Sk =
[
sst Sksp

]
is equal

to D. Then, solving the MAXVAR problem in relation (4.6), for matrices
{
Xk
}K
k=1

with

G ∈ RN×D, would provide an estimate of the column space of matrix W. On the other

hand, a set of matrices
{
Qk
}K
k=1

would be also provided and due to relation (4.12), it turns

out that an estimate of the column space of matrix Sk, for all k = 1, . . . K, can be also

obtained. More specifically, in the noiseless case, we would ideally have that

span
(
Sk
)

= span
(
Qk
)
, for k = 1, . . . , K. (4.21)

When,
K⋂
k=1

span
(
Sk
)

= span (sst) , (4.22)

also the following relation should hold

K⋂
k=1

span
(
Qk
)

= span (sst) . (4.23)

Therefore, solving the following MAXVAR problem

min
{dk}Kk=1,g

K∑
k=1

∥∥Qkdk − g
∥∥2
2

s.t. gTg = 1,

(4.24)

should provide a vector g, which would satisfy

g =
sst
‖sst‖2

. (4.25)
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4.5 Application to real-world data

In this section, we test the discussed methods from the previous sections in analyzing

real-world task-based fMRI data. Specifically, we process two datasets, recorder at the

University of Crete, corresponding to two slightly different conditions. Each dataset cor-

responds to a collection of task-based fMRI data from 25 subjects in slightly different

experimental condition. Next, we quote some information regarding the experimental de-

sign and the preprocessing pipeline that was applied on the data. At last, we present the

results of our gCCA based data analysis for both conditions.

4.5.1 Experimental design

The fMRI block design consists of two action observation conditions. Indicative speci-

fications are presented below. A different video clip illustrating a two-movement action

sequence was presented 6 times within each 35 sec block. The stimulus set-up was iden-

tical across the total number of blocks, which was 4, consisting of a fixed red spot at the

center of the display, presenting a female person sitting behind a table. A white tea cup

is positioned on the table and a ceramic bowl 30 cm in diameter is located on a smaller

table right next to the person’s head. The experimental conditions examining the effects of

an action with the same goal but different kinematics are: (i) Fast to cup-Slow to person:

Consists of a rapid grasping movement toward the tea cup (700 ms in duration; average

velocity = 0.64 m/sec), followed by a much slower movement that brings the cup to the

person’s mouth (3300 ms in duration; average velocity = 0.14 m/sec). (ii) Slow to cup-Fast

to person: Consists of a slow grasping movement toward the tea cup (3300 ms in duration;

average velocity = 0.14 m/sec), followed by a much faster movement that brings the cup

to the person’s mouth (700 ms in duration; average velocity = 0.64 m/sec). The stimulus

layout is identical to (i).

4.5.2 Image acquisition and pre-processing

At first, a standard T2 weighted 2D-TSE-FLAIR (TR/TE/TI = 9000/120/2600 ms)

sequence with 4 mm transverse slices was performed to ensure absence of congenital

anatomic variations or unexpected pathology. For the BOLD-fMRI, a T2∗-weighted, fat-

saturated 2D-FID-EPI sequence was used with the following parameters: repetition time
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(TR) 3500 ms, echo time (TE) 50 ms, field of view (FOV) 192 × 192 × 108 (x, y, z), ac-

quisition voxel size 3 × 3 × 3 mm. Whole brain scans consisted of 36 transverse slices

with 3.0-mm slice thickness and no interslice gap. Additionally, high resolution anatomi-

cal images were acquired sagittally, using a 3D magnetization-prepared rapid acquisition

gradient echo sequence (3D-MPRAGE) with the following parameters: TR 9.8 ms, TE

4.6 ms, flip angle 8 deg, inversion time (TI) 922 ms, FOV 180×230 (x, z), with acquisition

voxel size of 0.98× 0.98 (x, z) and slice thickness of 1 mm.

For both datasets, image preprocessing was performed in SPM8 (Statistical Paramet-

ric Mapping software, SPM: Welcome Department of Imaging Neuroscience, London, UK;

available at: http://www.fil.ion.ucl.ac.uk/spm/). Initially, EPI scans were spatially re-

aligned to the first image of the first time series using second degree B-spline interpo-

lation algorithms and motion-corrected through rigid body transformations (three trans-

lations and three rotations about each axis). Next, images were spatially normalized to

a common brain space (MNI template) and smoothed using an isotropic Gaussian filter

(FWHM=8 mm). At last, the SPM platform is able to provide a time response component,

based on the activation onsets and offsets, which is expected to appear in the activated

brain voxels. From now on, we denote this expected response as sexp, which will be the

same for both conditions, since as we mentioned above, the stimulus layout, between the

two conditions, is identical.

4.5.3 gCCA based data analysis

The number of different stimuli, in the experimental design described above, is one, for

both conditions. Therefore, we can assume that, in both conditions, the recorded data

from the k-th, for k = 1, . . . , 25, should follow the model in relation (4.20), namely

Xk = [ast]k wsts
T
st + WspD

k
sp

[
Sksp
]T

+ Ek. (4.26)

Next, we present the results from our gCCA based analysis on both datasets. In Figures

4.1 and 4.2, we depict

1. (left) the extracted common temporal component ŝst that emerged for various com-

mon subspace dimensions, as well as the expected response sexp.

2. (right) the absolute correlation coefficients between sexp and the extracted common

temporal component ŝst that emerged for all possible common subspace dimensions.
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(b) Absolute correlation coefficient between sexp

and ŝst across different common subspace dimensions.

Figure 4.1: Results from condition (i).
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Figure 4.2: Results from condition (ii).
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We observe that

1. the estimated common temporal component ŝst for different common subspace di-

mensions are very much alike; this implies that our method is not sensitive to the

common subspace dimension, which is a quantity that is unknown, in general. Thus,

we can get useful results over a wide range of values of the dimension of the common

subspace.

2. the estimated common temporal components ŝst are quite similar to the expected

signal sexp, since their correlation coefficient takes values at about 0.8, and even

higher in some cases.

Consequently, we conclude that our method effectively estimates the common temporal

component.

In the sequel, we will use the estimates to derive correlation coefficient maps. Since

projecting the data of each subject onto the subspace that is spanned from matrix G is able

to reduce the noise effect (when G spans that common subspace of interest), in Figures 4.3

and 4.4, we present spatial maps that emerge from calculating the voxelwise correlation

coefficient between the denoised data and signal ŝst, for both conditions. Specifically, a

correlation coefficient map has been obtained from the data of each subject and then, we

created a binary map, which indicates the voxels that have a positive correlation coefficient

across all subjects.

For both conditions, we can deduce that voxels from the occipital and parietal lobes

present a positive correlation with the estimated common temporal component ŝst, across

all subject. Furthermore, we can observe that, for the case of condition (i), voxels from the

premotor cortex (PMv area) and inferior frontal gyrus also present a positive correlation

with the estimated common temporal component ŝst, across all subject. Both observations

are consistent with the nature
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Figure 4.3: Correlation coefficient maps calculated for common subspaces with dimension

19 (red) and 20 (yellow) for condition (i).
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Figure 4.4: Correlation coefficient maps calculated for common subspaces with dimension

14 (red) and 44 (yellow) for condition (ii)
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Chapter 5

Conclusion

In this report, we studied how tensor decomposition models can be used in analyzing multi-

subject/trial fMRI data. We saw that the PARAFAC model is inadequate, since it does

not take into account activations that are related with functional connectivity networks.

Then, we proposed a constrained version of PARAFAC2 model that alleviates the discussed

shortcomings.

In addition, we emphasized the fact that signals of interest are usually weak and appear

only in a small percentage of the total brain voxels. Hence, there is the imperative need

in devising denoising methods.

Exploiting the fact that the signals of interest are common across subjects, Canonical

Correlation Analysis can be employed as a basis for developing efficient algorithms for

interesting problems as signal denoising and common component retrieval.
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