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Abstract

In this report, we summarize the work performed under the framework of Work Package 1,

“Efficient Parallel Algorithms for Tensor Factorization” of project PARTENSOR during the

first twelve months. More specifically,

1. we develop efficient algorithms for dense tensor factorization, under various constraints

on the tensor factors, for arbitrary tensor order;

2. we develop parallel implementations of the above mentioned algorithms (up to order

eight, with easy extension to higher orders) and test their efficiency on large multi-core

computers.

The results are very encouraging, thus, our algorithms and implementations constitute the

starting point for the parallel toolbox “PARTENSOR”.



Chapter 1

Introduction

1.1 Tensor factorization basics

Tensors are mathematical objects that have recently gained great popularity due to their

ability to model multiway data dependencies [1], [2], [3], [4]. Tensor factorization (or decom-

position) into latent factors is very important for numerous tasks, such as feature selection,

dimensionality reduction, compression, data visualization and interpretation. Tensor factor-

izations are usually computed as solutions of optimization problems [1], [2]. The Canonical

Decomposition or Canonical Polyadic Decomposition (CANDECOMP or CPD), also known

as Parallel Factor Analysis (PARAFAC), and the Tucker Decomposition are the two most

widely used tensor factorization models. In this report, we focus on algorithms, and their

distributed implementations, for the solution of the PARAFAC model, under various factor

constraints, Specifically, we consider the unconstrained case as well as the cases of nonnega-

tivity, orthogonality, and sparsity constraints.

Alternating Optimization (AO), All-at-Once Optimization (AOO), and Multiplicative Up-

dates (MUs) are among the most commonly used techniques for tensor factorizations [2], [5].

Recent work for constrained tensor factorization/completion includes, among others, [6], [7],

[8], and [9].

In [8], an Alternating Direction Method of Multipliers (ADMM) algorithm for NTF has

been derived, and an architecture for its parallel implementation has been outlined. However,

the convergence properties of the algorithm in ill-conditioned cases are not favorable, necessi-

tating additional research towards their improvement. In [9], the authors consider constrained

matrix/tensor factorization/completion problems. They adopt the AO framework as outer

loop and use the ADMM for the solution of the inner constrained optimization problems for

one matrix factor conditioned on the rest. The ADMM offers significant flexibility, due to its

ability to efficiently handle a wide range of constraints.
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In [10], two parallel algorithms for unconstrained tensor factorization/completion have

been developed and results concerning the speedup attained by their Message Passing Inter-

face (MPI) implementations on a multi-core system have been reported. Related work on

parallel algorithms for sparse tensor decomposition includes [11] and [12].

We adopt the AO framework and solve each subproblem using optimal first-order (i.e.,

gradient-based) algorithms. These algorithms are very promising since they combine low

computational complexity per iteration and fact convergence. In many cases, they are the

only hope for the solution of large-scale optimization problems. Then, we develop parallel

implementations for distributed computational environments, using Message Passing Interface

(MPI).

1.1.1 Notation

NN denotes the set {1, . . . , N}. Vectors, matrices, and tensors are denoted by small, capital,

and calligraphic capital bold letters, respectively; for example, x, X, and X . RI×J×K+ denotes

the set of (I × J ×K) real nonnegative tensors, while RI×J+ denotes the set of (I × J) real

nonnegative matrices. For a matrix A ∈ RI×J , we use the elementwise references ai,j or

[A]i,j , interchangeably, while we refer to the j-th column of the matrix as aj . S(I,J) = {X ∈
RI×J : XTX = I} denotes the Stiefel manifold formed by all orthonormal J-frames in RI .
Also, SPs :=

{
A ∈ RI×R : ‖A‖1 ≤ s

}
denotes the set of matrices with sparsity constraints,

regulated by parameter s. ‖·‖F denotes the Frobenius norm of the tensor or matrix argument,

I denotes the identity matrix of appropriate dimensions, and (A)+ denotes the projection of

matrix A onto the set of elementwise nonnegative matrices. Inequality A � B means that

matrix A − B is positive semidefinite, while A > 0 denotes a matrix A that has positive

elements.

1.1.2 Structure

In Chapter 2, we consider the matrix least squares problem with constraints. In Chapter 3,

we consider the problem of constrained tensor factorization under the PARAFAC model. In

Chapter 4, we present and describe in detail an MPI implementation of the algorithms for

constrained tensor factorization. In Chapter 5, we briefly present some elements of the CUDA

programming language. In Chapter 6, we test the efficiency of the proposed algorithm with

numerical experiments in both serial and parallel computing environments.
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Chapter 2

Matrix Least Squares Problems

In this chapter, we describe the matrix least squares problem, which will be our workhorse

towards the development of efficient algorithms for tensor factorization.

2.1 Matrix Least Squares

Let X ∈ RM×N and B ∈ RN×R, and consider the problem

min
A

f(A) =
1

2
‖X−ABT ‖2F . (2.1)

This problem is known as the Matrix Least Squares problem. It is easy to see that it is a convex

optimization problem, hence, the existence of a global minimizer of f , A∗, is guaranteed. The

solution A∗ must satisfy the following linear system of equations

XB = A∗BTB, (2.2)

which are known are normal equations. Thus, A∗ is given by

A∗ = XB† = XB
(
BTB

)−1
. (2.3)

For an extensive discussion on the computational aspects of the solution of the normal equa-

tions, the reader is referred to [13].

2.2 Matrix Nonnegative Least Squares

Let X ∈ RM×N , A ∈ RM×R+ , B ∈ RN×R, and consider the Matrix Nonnegative Least Squares

(MNLS) problem

min
A≥0

f(A) =
1

2
‖X−ABT ‖2F . (2.4)
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The problem in (2.4) is a convex optimization problem with element-wise inequality con-

straints. Due to the lack of existence of a closed form solution, we use iterative numerical

methods for its solution.

In the next section, we initially consider general L-smooth µ-strongly convex optimization

problems and present optimal first-order algorithms for their solution. Then, we derive the

corresponding optimal algorithm for the MNLS problem.

2.2.1 Optimal first-order algorithms for L-smooth µ-strongly convex op-

timization problems

We consider optimization problems of smooth and strongly convex functions and briefly

present results concerning their information complexity and the associated first-order optimal

algorithms (for a detailed exposition see [14, Chapter 2]).

We assume that f : Rn → R is a smooth (that is, differentiable up to a sufficiently high

order) convex function, with gradient ∇f(x) and Hessian ∇2f(x). Our aim is to solve the

problem

min
x
f(x), (2.5)

within accuracy ε > 0. The solution accuracy is defined as follows. If f∗ := min
x
f(x), then

point x̄ ∈ Rn solves problem (2.5) within accuracy ε when f(x̄)− f∗ ≤ ε.
Let 0 < µ ≤ L < ∞. A smooth convex function f is called L-smooth or, using the

notation of [14, p. 66], f ∈ S∞,10,L , if

0 � ∇2f(x) � LI, ∀x ∈ Rn, (2.6)

and L-smooth µ-strongly convex, or f ∈ S∞,1µ,L , if

µI � ∇2f(x) � LI, ∀x ∈ Rn. (2.7)

The number of iterations that first-order methods need for the solution of problem (2.5),

within accuracy ε, is O
(

1√
ε

)
if f ∈ S∞,10,L , and O

(√
L
µ log 1

ε

)
if f ∈ S∞,1µ,L [14, Theorem 2.2.2].

The convergence rate in the first case is sublinear, while, in the second case, it is linear and

determined by the condition number of the problem, K := L
µ . Thus, strong convexity is a

very important property that should be exploited whenever possible.

An algorithm that achieves this complexity, and, thus, is first-order optimal, appears in

Algorithm 1 (see, also [14, p. 80]). This algorithm can handle both the L-smooth case, by

setting q = 0, and the L-smooth µ-strongly convex case, by setting q = µ
L > 0.

If the problem of interest is the constrained problem

min
x∈X

f(x), (2.8)
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Algorithm 1: Nesterov-type algorithm for L-smooth µ-strongly convex problems

Input: x0 ∈ RN , µ, L. Set y0 = x0, α0 ∈ (0, 1), q = µ
L .

1 k-th iteration

2 xk+1 = yk − 1
L∇f(yk)

3 αk+1 ∈ (0, 1) from α2
k+1 = (1− αk+1)α

2
k + qαk+1

4 βk+1 = αk(1−αk)
α2
k+αk+1

5 yk+1 = xk+1 + βk+1(xk+1 − xk)

where X is a closed convex set, then the corresponding optimal algorithm is very much alike

Algorithm 1, with the only difference being in the computation of xk+1. We now have that

[14, p. 90]

xk+1 = ΠX

(
yk −

1

L
∇f(yk)

)
, (2.9)

where ΠX(·) denotes the Euclidean projection onto set X. The convergence properties of

this algorithm are the same as those of Algorithm 1. If the projection onto set X is easy to

compute, then the algorithm is both theoretically optimal and very efficient in practice.

2.2.2 Optimal first-order methods for L-smooth µ-strongly convex MNLS

problems

In this section, we present an optimal first-order algorithm for the solution of L-smooth µ-

strongly convex MNLS problems. Optimal first-order methods have recently attracted great

research interest because they are strong candidates and, in many cases, the only viable way

for the solution of very large optimization problems.

Nesterov-type algorithm for MNLS with proximal term

Let X ∈ RM×N , A ∈ RM×R, B ∈ RN×R, and consider the problem

min
A≥0

f(A) :=
1

2
‖X−ABT ‖2F . (2.10)

The gradient and Hessian of f , at point A, are, respectively,

∇f(A) = −
(
X−ABT

)
B (2.11)

and

∇2f(A) :=
∂2f(A)

∂vec(A)∂vec(A)T
= BTB⊗ I � 0. (2.12)

Let L := max(eig(BTB)) and µ := min(eig(BTB)). If µ = 0 (for example, if R > N), then

problem (2.10) is L-smooth. If µ > 0, then problem (2.10) is L-smooth µ-strongly convex. A
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Algorithm 2: Nesterov-type algorithm for MNLS problems with proximal term

Input: X ∈ RM×N , B ∈ RN×R, A∗ ∈ RM×R

1 L = max(eig(BTB)), µ = min(eig(BTB))

2 λ = g(L, µ)

3 W = −XB− λA∗, Z = BTB + λI

4 q = µ+λ
L+λ

5 A0 = Y0 = A∗

6 α0 = 1, k = 0

7 while (1) do

8 ∇fP(Yk) = W + YkZ

9 if (terminating condition is TRUE) then

10 break

11 else

12 Ak+1 =
(
Yk − 1

L+λ ∇fP(Yk)
)
+

13 α2
k+1 = (1− αk+1)α

2
k + qαk+1

14 βk+1 = αk(1−αk)
α2
k+αk+1

15 Yk+1 = Ak+1 + βk+1 (Ak+1 −Ak)

16 k = k + 1

17 return Ak.

first-order optimal algorithm for the solution of (2.10) can be derived using the approach of

Section 2.2.1. We note that [15] and [16] solved problem (2.10) using a variation of Algorithm

1, which is equivalent to Algorithm 1 with µ = 0. However, if µ > 0, then this algorithm is

not first-order optimal and, as we shall see later, it performs much worse than the optimal.

We note that the values of L and µ are necessary for the development of the Nesterov-type

algorithm, thus, their computation is imperative.1

Under the AO framework, in order to avoid very ill-conditioned problems (and guarantee

strong convexity), we introduce a proximal term and solve problem

min
A≥0

fP(A) :=
1

2
‖X−ABT ‖2F +

λ

2
‖A−A∗‖2F , (2.13)

for given A∗ and appropriately chosen λ. We choose λ based on L and µ, and denote this

functional dependence as λ = g(L, µ). If µ
L � 1, then we may set λ ≈ 10µ, significantly

1An alternative to their direct computation is to estimate L using line-search techniques and overcome the

computation of µ using heuristic adaptive restart techniques [17]. However, in our case, this alternative is

computationally demanding, especially for large-scale problems, and shall not be considered.
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improving the conditioning of the problem by putting large weight on the proximal term;

however, in this case, we expect that the optimal point will be biased towards A∗. Otherwise,

we may set λ / µ, putting small weight on the proximal term and permitting significant

progress towards the computation of A that satisfies approximate equality X ≈ ABT as

accurately as possible.

The gradient of fP, at point A, is

∇fP(A) = −
(
X−ABT

)
B + λ(A−A∗). (2.14)

The Karush-Kuhn-Tucker (KKT) conditions for problem (2.13) are [15]

∇fP(A) ≥ 0, A ≥ 0, ∇fP(A) ~ A = 0. (2.15)

These expressions can be used in a terminating condition. For example, we may terminate

the algorithm if

min
i,j

(
[∇fP(A)]i,j

)
> −δ1,max

i,j

(∣∣∣[∇fP(A) ~ A]i,j

∣∣∣) < δ2, (2.16)

for small positive real numbers δ1 and δ2, while A ~ B denotes the elementwise product of

matrices A and B. Of course, other criteria, based, for example, on the (relative) change of

the cost function can be used in terminating conditions.

A Nesterov-type algorithm for the solution of the MNLS problem with proximal term

(2.13) is given in Algorithm 2. For notational convenience, we denote Algorithm 2 as

Aopt = Nesterov MNLS(X,B,A∗).

Computational complexity of Algorithm 2

Quantities W and Z are computed once per algorithm call and cost, respectively, O(MNR)

and O(RN2) arithmetic operations. Quantities L and µ are also computed once and cost

at most O(R3) operations. ∇fP(Yk), Ak, and Yk are updated in every iteration with cost

O(MR2), O(MR), and O(MR) arithmetic operations, respectively.

2.3 Matrix Least Squares with Orthogonality Constraints

(Orthogonal Procrustes)

Given two matrices X ∈ RN×M and B ∈ RM×R, the optimization problem

min
A∈S(N,D)

f (A) =
∥∥X−ABT

∥∥2
F
, (2.17)
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is known as Orthogonal Procrustes (OP) and has a closed form solution given by [18, 19]

Aopt = UVT = M
(
MTM

)− 1
2 , (2.18)

where matrices U ∈ RN×R and V ∈ RR×R are given by the singular value decomposition of

matrix M = XB = UΣVT .

2.3.1 Computational complexity of the OP problem

For later use, we notice that an efficient way of solving the OP problem, after calculat-

ing matrix M with computational complexity O (NMR) arithmetic operations and when

min (N,M) > R, is the following algorithm:

1. Calculate MTM, with complexity O
(
NR2

)
;

2. Calculate the eigen-decomposition of MTM = VΣVT with complexity O
(
R3
)
;

3. Set G = MVΣ−
1
2 VT with complexity O

(
NR2

)
.

Thus, the overall complexity is O
(
NR2

)
in contrast to computing the singular value decom-

position of matrix M in O
(
N2R

)
. The most demanding computation of this approach is the

computation of matrix M.

2.4 Sparse Matrix Least Squares

Let X ∈ RM×N , A ∈ RM×R, B ∈ RN×R, and consider problem

min
A

f(A) =
1

2
‖X−ABT ‖2F + λ‖A‖1. (2.19)

The problem (2.19) is the matrix least squares with sparsity constraints. The `1-norm is used

as a sparsity inducing term. This class of problems do not have a closed form solution, thus,

for their solution, we rely on efficient iterative algorithms.

2.4.1 Fast Iterative Shrinkage Thresholding Algorithm for LASSO Prob-

lems

In this section, we present the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [20],

an optimal first order method for the solution of optimization problems of the form

min
x
f(x) := f0(x) + h(x), (2.20)
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where h(x) is not differentiable. Given a point yk, a gradient step is performed using only

∇f0(yk), and the new point is computed via

xk+1 = proxh(yk − η∇f0(yk)), (2.21)

where proxh(·) is the proximal map of h.

Consider the problem of the form

min
x
f(x) =

1

2
‖Ax− b‖22 + λ‖x‖1, (2.22)

where x ∈ RN , b ∈ RM , and A ∈ RM×N . This optimization problem is known as Least

Absolute Shrinkage and Selection Operator (LASSO) [21]. By letting f0 (x) = 1
2 ‖Ax − b‖22

and h (x) = λ‖x‖1, the gradient ∇f0 at point x is given by

∇f0(x) = AT (Ax− b). (2.23)

When applied to problem (2.22), the proximal map reduces to soft-thresholding. Namely,

proxh(yk − (η · λ)∇f0(yk)) = sthrη·λ(yk − (η · λ)∇f0(yk)). (2.24)

For the i-th element of vector x, the soft-thresholding operator is given by

sthrη·λ(xi) = sgn(xi)[|xi| − (η · λ)]+, (2.25)

where the operator [·]+ is the projection onto the positive orthant. The algorithm FISTA for

the optimization problem (2.22) is given in Algorithm 3.

Algorithm 3: FISTA algorithm for (2.22) optimization problems

Input: x0 ∈ RN , smooth constant of f0 L, λ. Set y1 = x0, t1 = 1, η = 1/L.

1 k-th iteration

2 xk = sthrη·λ(yk − (η · λ)∇f0(yk))

3 tk+1 =
1 +

√
1 + 4t2k

2

4 yk+1 = xk +
tk − 1

tk+1
(xk − xk−1)

2.4.2 FISTA for Sparse Matrix Least Squares Problems

In the sequel, we present the extension of FISTA for the matrix least squares problems with

sparsity constraints. Consider the optimization problem

min
A

f(A) :=
1

2
‖X−ABT ‖2F + λ‖A‖1, (2.26)
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where X ∈ RM×N , A ∈ RM×R, B ∈ RN×R and ‖A‖1 is the sum of the absolute values of the

entries of A. The gradient of f0 at point A is

∇f0(A) = −
(
X−ABT

)
B. (2.27)

Also, let L := max(eig(BTB)). Similarly to the discussion in the previous section, a standard

gradient step is performed using ∇f0, and the new estimate is computed via soft-thresholding.

The FISTA-type algorithm for the LS with sparsity constraints optimization problem is given

in Algorithm 4.

Algorithm 4: FISTA-type algorithm for the solution of (2.19)

Input: X ∈ RM×N ,A0 ∈ RM×R, B ∈ RN×R, L, λ. Set Y1 = A0, t1 = 1, η = 1/L.

1 k-th iteration

2 Ak = sthrη·λ(Yk − (η · λ)∇f0(Yk))

3 tk+1 =
1 +

√
1 + 4t2k

2

4 Yk+1 = Ak +
tk − 1

tk+1
(Ak −Ak−1)

A tolerance parameter tolFISTA is used for the termination of the algorithm. Specifically,

a relative factor change criterion is used for the last two iterations of the algorithm. Namely

‖Ak+1 −Ak‖F
‖Ak‖F

< tolFISTA. (2.28)

For convenience, we denote Algorithm 4 as

Aopt = Fista l1(X,B,A0). (2.29)

An equivalent problem to (2.26) is

min
A

1

2
‖X−ABT ‖2F

s.t. A ∈ SPsA ,
(2.30)

where sA is a parameter that regulates the sparsity of matrix A. The parameters λ and

sA are closely related with each other. The acquisition of one parameter from the other is

possible through a tuning process, which is beyond the scope of this work.

Computational Complexity of Algorithm 4

Matrices XB and BTB are computed once per algorithm call, and demand O(MNR) and

O(NR2) arithmetic operations. Quantity L is also computed once and cost O(R3) operations.

The gradient ∇f0(Yk), Ak and Yk are updated in every iteration with computational cost

O(MR2), O(MR) and O(MR), respectively.
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Chapter 3

Tensor Factorizations

3.1 Mathematical Background

3.1.1 Definitions

Definition 3.1.1 Let a ∈ RN , b ∈ RP , and c ∈ RJ . The outer product of a and b is

defined as the rank-one matrix with elements

[a ◦ b]n,p = anbp, (3.1)

for all n ∈ NN , p ∈ NP , and the outer product of a, b, and c is defined as the rank-one tensor

with elements

[a ◦ b ◦ c]n,p,j = anbpcj , (3.2)

for all n ∈ NN , p ∈ NP , and j ∈ NJ .

Definition 3.1.2 Let A ∈ RN×M and B ∈ RP×K . The Kronecker product (or tensor

product) of A and B is defined as the matrix

A⊗B =


a1,1B · · · a1,MB

...
. . .

...

aN,1B · · · aN,MB

 ∈ RNP×MK . (3.3)

Definition 3.1.3 Let A ∈ RN×M and B ∈ RP×M . The Khatri-Rao product of A and B

is defined as the matrix

A�B =
[
a1 ⊗ b1 · · · aM ⊗ bM

]
∈ RNP×M . (3.4)

Definition 3.1.4 Let A ∈ RN×M and B ∈ RN×M . The Hadamard Product or elementwise

matrix product of A and B, is a matrix of size N ×M , and is defined as

[A ~ B]n,m = an,mbn,m, (3.5)
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for all n ∈ NN , m ∈ NM .

Regarding the Kronecker and Khatri-Rao products, we notice that they are both associa-

tive [4]. For example, a Khatri-Rao product of three matrices can be equivalently calculated

as

A�B�C = (A�B)�C = A� (B�C) (3.6)

For the latter three products, the following properties hold [3]:

(A⊗B) (C⊗D) = AC⊗BD, (3.7)

(A⊗B)† = A† ⊗B†, (3.8)

(A�B)T (A�B) = ATA ~ BTB, (3.9)

(A�B)† = ((ATA) ~ (BTB))−1(A�B)T , (3.10)

where A† denotes the Moore-Penrose pseudoinverse of A. Based on the associativity of these

products, we can derive generalized expressions for properties (3.7), (3.9), and (3.10) for three

or more operands.

Definition 3.1.5 Let X ∈ RI1×···×IN and U(i) ∈ RIi×R, for i ∈ NN . We define the rank of

X as the minimum positive integer R such that

X =
R∑
r=1

u(1)
r ◦ · · · ◦ u(N)

r . (3.11)

Definition 3.1.6 Let X ∈ RI1×···×IN . The matricization of the tensor with respect to

the j-th mode (mode-j matricization) is defined as the matrix X(j) ∈ RIj×
∏N

k=1,k 6=j Ik , where

the element xi1,...,ij ,...,iN is mapped to
[
X(j)

]
ij ,k

according to [3]

k = 1 +

N∑
p=1
p 6=j

(ip − 1)Jp, where Jp =

p−1∏
m=1
m6=j

Im.

This can be better understood through an example. Let a tensor X ∈ RI×J×K . We are

interested in examining the mode-1 matricization of X , X(1) ∈ RI×JK . Then, element xi1,i2,i3 ,

will be mapped to element
[
X(1)

]
i1,k

, where

k = 1 + (i2 − 1) + (i3 − 1)I2, (3.12)

since
1∏

m=2
Im =

∏
m∈∅

Im = 1 (by convention) and J3 =
2∏

m=2

Im = I2. For the mode-2 matriciza-

tion, X(2) ∈ RJ×IK , element xi1,i2,i3 will be mapped to element
[
X(2)

]
i2,k′

, where

k′ = 1 + (i1 − 1) + (i3 − 1)I1,

12



since J1 =
0∏

m=1
Im = 1, J3 =

2∏
m=2

Im = I1,, and so on.

Definition 3.1.7 Let X ∈ RI1×···×In···×IN and U ∈ RIn×J . The n-mode product of X
and U, denoted as X ×n U, is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN and it is

defined, elementwise, as

(X ×n U)i1,...,in−1,j,in+1,...,IN =

IN∑
in=1

xi1,i2,...,in,...,iNuin,j .

The idea can also be expressed in terms of the mode-n matricization of X since

Y = X ×n U⇐⇒ Y(n) = UTX(n).

Definition 3.1.8 Let X ∈ RI1×···×In···×IN and v ∈ RIn. The n-mode vector product of X
with v produces a new tensor Y ∈ RI1×···×In−1×In+1×···×IN and is defined as

yi1,i2,...,in−1,in+1,...,iN =

In∑
j=1

xi1,i2,...,in−1,j,in+1,...,iN vj .

The new tensor Y has order N − 1. This operation is also called tensor-times-vector (TTV)

multiplication. In addition, ordering of different TTVs does not matter; the following holds

[22]

X ×i u1 ×j u2 = X ×j u2 ×i u1, (3.13)

for X I1×···×Ii×···×Ij ...IN , u1 ∈ RIi and u2 ∈ RIj .

Let us assume vectors vi ∈ RIi , with i ∈ NN , and that we want to perform the following

operation

X ×1 v1 ×2 v2 ×3 · · · ×N vN . (3.14)

A more concise way to write it, which we adopt for the rest of this report, is the following

X ×i∈NN
vi. (3.15)

3.2 PARAFAC model

Let tensor X o ∈ RI1×···×IN admit a factorization of the form

X o = 〚Uo(1), . . . ,Uo(N)〛 =
R∑
r=1

uo(1)r ◦ · · · ◦ uo(N)
r , (3.16)

where Uo(i) = [u
o(i)
1 · · · u

o(i)
R ] ∈ RIi×R, with i ∈ NN . We observe the noisy tensor X = X o+E,

where E is the additive noise. Then, estimates of Uo(i) can be obtained by computing matrices
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U(i) ∈ RIi×R, for i ∈ NN , that solve the optimization problem

min
U(1),...,U(N)

fX

(
U(1), . . . ,U(N)

)
, (3.17)

where fX is a function measuring the quality of the factorization. A common choice for fX

is

fX

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥X − 〚U(1), . . . ,U(N)〛
∥∥∥2
F
. (3.18)

If Y = 〚U(1), . . . ,U(N)〛, then, for an arbitrary mode i, the corresponding matrix unfolding

is given by [3]

Y(i) = U(i)K(i)T , (3.19)

where

K(i) = U(N) � · · · �U(i+1) �U(i−1) � · · · �U(1). (3.20)

Thus, fX can be expressed as

fX (U(1), . . . ,U(N)) =
1

2

∥∥∥X(i) −U(i)K(i)T
∥∥∥2
F
, i ∈ NN . (3.21)

These expressions form the basis of the alternating least squares algorithm (ALS) for tensor

factorization, in the sense that, for fixed matrix factors U(j), with j 6= i, we can update U(i)

by solving a matrix least squares problem.

3.3 Dimension Trees

As we mentioned above, for fixed matrix factors U(j), with j 6= i, updating U(i) can be

reduced to the solution of a matrix least squares problem. This reduces to the solution of the

normal equations, which, for the PARAFAC model, are given by

Y(i)K
(i) = U(i)H(i), (3.22)

where H(i) = K(i)T K(i) =
N

~
j=1,j 6=i

U(j)T U(j). The left side term of the above equation is

referred to as matricized tensor times Khatri-Rao product (MTTKRP). For the PARAFAC

decomposition, under the ALS framework, the calculation of MTTKRP constitutes the main

computational bottleneck and finding ways to reduce its computational complexity has at-

tracted much interest recently.

Dimension trees are data structures that aim to avoid recalculating expressions that are

common among computations of different MTTKRPs during a full cycle of factor updates

(one ALS outer iteration). We introduce them by initially examining how they are used in

the case of a third-order tensor, and then of a fourth-order tensor. Based on the analysis

for the fourth-order tensor, the approach can be easily generalized for the case of Nth-order

tensors, with N > 4.
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Third-Order Tensors

Let us consider a tensor X ∈ RI×J×K and let U(1) ∈ RI×R, U(2) ∈ RJ×R, and U(3) ∈ RK×R

be the approximating factors. Then, the MTTKRPs that correspond to factors U(1) and

U(2), respectively, are given by

M(1) = X(1)(U
(3) �U(2)),

M(2) = X(2)(U
(3) �U(1)).

In the sequel, we show that the underlined (temporary) quantities correspond to a common

term which is actually a tensor. We will refer to these common tensors as partial MTTKRPs.

Each element of matrix M(1) can be computed as

m
(1)
i,r =

∑
j,k

xi,j,ku
(2)
j,ru

(3)
k,r =

∑
j

u
(2)
j,r

∑
k

xi,j,ku
(3)
k,r =

∑
j

u
(2)
j,r ti,j,r,

where T ∈ RI×J×R is a tensor that can be reused for the computation of M(2), since

m
(2)
j,r =

∑
i,k

xi,j,ku
(1)
i,r u

(3)
k,r =

∑
i

u
(1)
i,r

∑
k

xi,j,ku
(3)
k,r =

∑
i

u
(1)
i,r ti,j,r.

However, the MTTKRP that corresponds to the factor U(3) has to be computed from ground.

Fourth-Order Tensors

Let X ∈ RI×J×K×L and let U(1) ∈ RI×R, U(2) ∈ RJ×R, U(3) ∈ RK×R, and U(4) ∈ RL×R be

the approximating factors. Then, the corresponding MTTKRPs are given by

M(1) = X(1)(U(4) �U(3) �U(2)),

M(2) = X(2)(U(4) �U(3) �U(1)),

M(3) = X(3)(U(4) �U(2) �U(1)),

M(4) = X(4)(U(3) �U(2) �U(1)).

Working in the same manner as above, we obtain

m
(1)
i,r =

∑
j,k,l

xi,j,k,lu
(2)
j,ru

(3)
k,ru

(4)
l,r =

∑
j

u
(2)
j,r r

1
i,j,r,

m
(2)
j,r =

∑
i,k,l

xi,j,k,lu
(1)
i,r u

(3)
k,ru

(4)
l,r =

∑
i

u
(1)
i,r r

1
i,j,r,

m
(3)
k,r =

∑
i,j,l

xi,j,k,lu
(2)
j,ru

(1)
i,r u

(4)
l,r =

∑
l

u
(4)
l,r r

2
k,l,r,

m
(4)
l,r =

∑
i,j,k

xi,j,k,lu
(2)
j,ru

(1)
i,r u

(3)
k,r =

∑
k

u
(3)
k,rr

2
k,l,r,

(3.23)

where R(1) ∈ RI×J×R is the result of R TTV products between T (1)
r and u

(3)
r , for r ∈ NR,

while R(2) ∈ RK×L×R is defined in a similar way.
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Computing MTTKRP through tensor operations

An alternate way of computing the MTTKRP, through tensor algebra operations, is by using

TTVs. The i-th factor’s MTTKRP, M(i), can be computed columnwise. The r-th column,

for r ∈ NR, is the result of the (N − 1) TTVs

m(i)
r = X ×j∈NN\i u(j)

r . (3.24)

3.3.1 Dimension Tree Based ALS

As presented in the previous cases, in each ALS outer iteration different MTTKRPs share

common terms, the partial MTTKRPs, that can be calculated once and saved to convenient

data structures. One popular choice for the needs of the ALS-based PARAFAC decomposition

is the deployment of a specific kind of binary trees, known as dimension trees. As we show

in Chapter 6, this strategy can offer significant speedup in computing tensor decompositions.

Constructing a Dimension Tree

Given a tensor X ∈ RI1×···×IN , a dimension tree follows the structure of a binary tree, where

each node of the tree is associated with a tensor and is labeled by a set of indices. The

cardinality of this set determines the order of the associated tensor, while the i-th index

defines the i-th dimension of the associated tensor, in correspondence to the dimensions of

the initial tensor X . Specifically, regarding the root node, the associated tensor will be X
and will be labeled by the set NN , while the non-root nodes will be associated with tensors

of order ≤ N , with the last dimension being equal to the decomposition rank R, and being

labeled with a subset of NN . This specification of the non-root nodes emerges from the fact

that the associated tensors, in the case of non-root nodes, are produced by partial MTTKRP

operations. The reader should notice at this point that, for the case of the leaf nodes, the

associated tensor will have a maximum order of 2, and by extension to an associated matrix

that will coincide with one of the MTTKRP terms.

Next, we demonstrate an example of a dimension tree for the case of a fourth-order

tensor. Let us assume that we are interested in factorizing a tensor X ∈ RI×J×K×L. Then, a

dimension tree that could be used along with the ALS algorithm is presented in Figure 3.1.

In accordance to the relations in (3.23), nodes {1, 2} and {3, 4} will be associated to tensors

R(1) and R(2), respectively, while nodes {1}, {2}, {3}, and {4} will be associated to matrices

M(1), M(2), M(3), and M(4), respectively.

16



{1,2,3,4}

{1,2}

{1} {2}

{3,4}

{3} {4}

Figure 3.1: Dimension tree for a Tensor of order 4. In general, each node is associated with a

tensor, and a set of indices S ⊆ Norder(X ), which give us information regarding the dimensions

of the node’s tensor.

Updating a Dimension Tree

In this section, we discuss the algorithms that are presented in [22]. Assume that factor U(i)

has been successfully updated after taking into consideration the associated matrix of leaf

{i}. It should be clear that several contents of the dimension tree are no more up to date and

proceeding with the course of the ALS algorithm would lead to inaccurate results. Hence,

after updating a matrix factor, the need of efficiently updating the dimension tree arises.

In order to describe the actions one should perform to achieve this, we have to introduce

some notation. A dimension tree generated by a tensor X is denoted as T (X ). The leaf

node labeled by {i} is denoted as li. For a node t, we denote the set of indices node t has

as µ(t), while we define µ′(t) to be the complement of µ(t) with respect to µ(root), namely

µ′(t) = NN \ µ(t). The parent of node t is denoted as P(t), while the left and right children

nodes are denoted as L(t) and R(t), respectively. The associated tensor to node t is denoted

by X (t). At last, we let δ(t) to be the set of indices that the sibling node of t has, namely,

δ(t) = µ′(t) \ µ′(P(t)) = µ(P(t)) \ µ(t).

Updating a node t requires the parent node P(t) to be updated. Hence, in order to

update node t, all the nodes that belong to the path connecting t and the root node have to

be traversed, beginning from node t, until an updated node be met. Note that the existence

of an updated node in every ending to the root path is guaranteed, since the content of the

root node does not change during the execution of the ALS algorithm and, therefore, can

always be considered as updated. As a result, updating node t can be achieved in a recursive

fashion. Algorithms 5 and 7, presented in [22], are devised within this framework for the

problem of efficient updating a dimension tree for the needs of PARAFAC decomposition via

ALS optimization.
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Dimension Tree based ALS

Before presenting the algorithms, we introduce some additional notation. By X (t)
r we refer

to a subtensor of X (t), where the last index is fixed at value r, with r ∈ NR. By exception,

for the root node we have that X (root)
r = X , for all values of r.

Algorithm 5 is a recursive algorithm that takes as input argument a node t ∈ T (X ),

deals with the update of all nodes on the path connecting node t and the root node, and

returns an updated version of X (t). From the perspective of [22], a node t′ is assumed to be

updated when tensor X (t′) exists, since when node t′ becomes outdated Algorithm 7 proceeds

into the destruction of X (t′). Algorithm 7 can be characterized as a customized version of

vanilla ALS PARAFAC, where the interaction of the dimension tree is supported by functions

Construct Dimension Tree, Destroy, and Dtree TTV.

Algorithm 5: DTree TTV: Dimension tree-based TTV with R vectors in each mode

Input: Node t ∈ T (X ).

Output: Tensor X (t).

1 if exists(X (t)) then

2 return

3 end

4 XP(t) = DTree TTV(P(t))

5 for r = 1, . . . , R do

6 X (t)
r = X (P(t))

r ×d∈δ(t) u
(d)
r

7 end

8 return X (t)

Alongside the standard ALS algorithm, we use two functions which have been proven

very useful in our experiments, in the sense that they significantly reduce the number of

outer iterations necessary to reach convergence.

Function “Normalize” receives as arguments a matrix U ∈ RI×R and a vector λ ∈ RR.

The Euclidean norm of each column ur is calculated and is used to update the element λr,

multiplicatively. Then, ur is set to have unit Euclidean norm. Notice that the j-th element

of vector λ, with j ∈ NR, contains the Frobenius norm of the rank-1 tensor u
(1)
j ◦ · · · ◦ u

(N)
j .

Function “Accelerate” implements an acceleration mechanism. The development of effi-

cient acceleration mechanisms is a very important research topic, see, for example, [23], [24],

but is beyond the scope of this report. In our experiments, we adopted the simple acceleration

technique used in the function parafac of the n-way toolbox [25], which is briefly described

as follows.
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At iteration k+1 > k0, after the computation and normalization of {U(i)
k }

N
i=1, we compute

U(i)
new = U

(i)
k + sk+1

(
U

(i)
k+1 −U

(i)
k

)
, (3.25)

where sk+1 is a small positive number; a simple choice for sk+1 is sk+1 = (k + 1)
1
n , where n

is initialized as n = 3 and its value may change as the algorithm progresses. In an analogous

manner, we compute U
(j)
new, with j 6= i. If fX (U

(1)
new, . . . ,U

(N)
new) ≤ fX (U

(1)
k+1, . . . ,U

(N)
k+1), then

the acceleration step is successful, and we set {U(j)
k+1}

N
j=1 = {U(j)

new}Nj=1. If the acceleration

step fails, then the factor matrix estimates {U(j)
k+1}

N
j=1 remain unchanged, and are given as

input to the next AO iteration. If the acceleration step fails for n0 iterations, then we set

n = n + 1, thus, decreasing the exponent of the acceleration step. Typical values of k0 and

n0 are k0 = 5 and n0 = 5.
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Algorithm 6: DTree-PARAFAC-ALS: A dimension tree-based PARAFAC-ALS algo-

rithm.
Input: X : An N -mode tensor,

R: The rank of PARAFAC decomposition.

Output: [λ,U(1), . . . ,U(N)]: Rank-R PARAFAC decomposition of X .

1 k = 0

2 λ = 1

3 T (X ) = Construct Dimension Tree(X )

4 for i = 1, . . . , N do

5 W(i) = U
(i)T
k U

(i)
k

6 end

7 repeat

8 for i = 1, . . . , N do

9 for t ∈ T (X ) do

10 if i ∈ µ′(t) then

11 Destroy(X (t))

12 end

13 end

14 M(i) = DTree TTV(li)

15 H(i) =
N

~
j=1,j 6=i

W(i)

16 U
(i)
k+1 = M(i)H(i)†

17 Normalize(U
(i)
k+1,λ)

18 W(i) =
(
U

(i)
k+1

)T
U

(i)
k+1

19 end

20 Accelerate(U
(1)
k ,U

(1)
k+1, . . . ,U

(N)
k ,U

(N)
k+1)

21 k = k + 1

22 until convergence is achieved or maximum number of iterations has been reached ;

23 return [λ,U
(1)
k , . . . ,U

(N)
k ]

3.4 Constrained Tensor Decomposition

In many applications, we are interested in tensor decompositions where the requested factors

are desired to comply with constraints emerging from underlying models or for interpretability
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reasons. Specifically, let tensor X o ∈ RI1×···×IN admit a factorization of the form

X o = 〚U(1)o, . . . ,U(N)o〛 =

R∑
r=1

u(1)o
r ◦ · · · ◦ u(N)o

r , (3.26)

where U(i)o =
[
u
(i)o
1 · · · u

(i)o
R

]
∈ B(i) ⊆ RIi×R, with i ∈ NN . We observe the noisy tensor

X = X o + E, where E ∈ RI1×···×IN is the additive noise. Then, the problem of finding

estimates of the factors U(i)o can be formulated as

min
U(1),...,U(N)

fX

(
U(1), . . . ,U(N)

)
s.t. U(i) ∈ B(i), i ∈ NN ,

(3.27)

where fX is a function measuring the quality of the factorization. As in the unconstrained

case, we focus on the sum of squared errors cost function

fX

(
U(1), . . . ,U(N)

)
=

1

2

∥∥∥X − 〚U(1), . . . ,U(N)〛
∥∥∥2
F
. (3.28)

Under the ALS framework, each factor can be updated via solving an unconstrained/constrained

matrix least squares problem. It can be formulated as

min
U(i)

1

2
‖X(i) −U(i)K(i)‖2F

s.t. U(i) ∈ B(i), i ∈ NN ,
(3.29)

where K(i) is defined in (3.20). In case B(i) is the set RIi×R, factor U(i) is updated via solving

an unconstrained LS problem (see Section 2.1). In case U(i) ∈ RIi×R+ , in order to update

factor U(i), it suffices to solve a MNLS problem, as introduced in Section 2.2. The special

case, where U(i) ∈ RIi×R+ , for all i ∈ NN , is known as Nonnegative Tensor Factorization

(NTF). In this formulation, one can adopt the ALS method, where a sequence of MNLS

problems is solved at every AO iteration [26].

For the case where B(i) is the set S(Ii,R), we refer to Orthogonal Procrustes problem (OP)

in Section 2.3. Specifically, where B(i) is the set S(Ii,R), while all the remaining factors are

unconstrained, we refer to the emerging tensor factorization problem as Unimodal Orthogo-

nality Constrained Tensor Factorization (UOTF). A FISTA-type algorithm (Algorithm 4) is

used to update factor U(i), when B(i) is the set of sparsity constraints SPsi (Section 2.4). As

we explain in Section 2.4, for this case, the problem (3.26) can be rewritten as

min
U(i)

1

2
‖X(i) −U(i)K(i)‖2F + λi‖U(i)‖1. (3.30)

The parameters λi and si are closely related and regulate the sparsity level of the factor U(i).
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Algorithm 7: DTree-PARAFAC-ALS: A dimension tree-based PARAFAC-ALS algo-

rithm, for GTF problems.

Input: X : An N -mode tensor,

R: The rank of PARAFAC decomposition,

constraints: Vector of factor constraints.

Output: [λ,U(1), . . . ,U(N)]: Rank-R PARAFAC decomposition of X .

1 k = 0

2 λ = 1

3 T (X ) = Construct Dimension Tree(X )

4 for i = 1, . . . , N do

5 W(i) = U
(i)T
k U

(i)
k

6 end

7 repeat

8 for i = 1, . . . , N do

9 for t ∈ T (X ) do

10 if i ∈ µ′(t) then

11 Destroy(X (t))

12 end

13 end

14 M(i) = DTree TTV(li)

15 H(i) =
N

~
j=1,j 6=i

W(i)

16 U
(i)
k+1 = Update Factor(M(i),H(i),U

(i)
k , constraintsi)

17 Normalize(U
(i)
k+1,λ)

18 W(i) =
(
U

(i)
k+1

)T
U

(i)
k+1

19 end

20 Accelerate(U
(1)
k ,U

(1)
k+1, . . . ,U

(N)
k ,U

(N)
k+1)

21 k = k + 1

22 until convergence is achieved or maximum number of iterations has been reached ;

23 return [λ,U
(1)
k , . . . ,U

(N)
k ]

22



Algorithm 8: The Update Factor function

Input: M(i): MTTKRP for factor i.

H(i):

U
(i)
k : Factor to be updated.

constraint: Constraint indicator.

Result: U
(i)
k+1: The updated factor.

1 if constraint = ’unconstrained’ then

2 U
(i)
k+1 = M(i)H(i)†

3 else if constraint = ’nonnegative’ then

4 U
(i)
k+1 = Nesterov MNLS(M(i),H(i),U

(i)
k )

5 else if constraint = ’orthogonal’ then

6 U
(i)
k+1 = OP Update(M(i),H(i))

7 else if constraint = ’sparsity’ then

8 U
(i)
k+1 = Fista l1(M(i),H(i),U

(i)
k )

9 return U
(i)
k+1
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Chapter 4

Parallel Implementations

In this chapter, we assume that we have at our disposal p =
∏N
i=1 pi processing elements and

describe a parallel implementation of the AO GTF algorithm, which has been motivated by

the medium-grained approach of [11].1 The p processors form an n-dimensional Cartesian

grid and are denoted as pi1,...,iN , with ij ∈ Npj and j ∈ NN .

4.1 Message Passing Implementations

4.1.1 Variable partitioning and data allocation

In order to describe the parallel implementation, given a decomposition problem of a tensor

X ∈ RI1×···×IN into a set of factors U(i) ∈ RIi×R, for all i ∈ NN , we introduce certain

partitionings of the factor matrices and tensor X . Specifically, we partition each factor

matrix U(i) into pi block rows as

U(i) =

[ (
U(i)1

)T
· · ·

(
U(i)pi

)T ]T
, (4.1)

with U(i)j ∈ R
Ii
pi
×R

, for all j ∈ Npi . Additionally, we partition tensor X into p subtensors as

X i1,...,iN = X
(

(i1 − 1)
I1
p1

+ 1 : i1
I1
p1
, . . . , (iN − 1)

IN
pN

+ 1 : iN
IN
pN

)
∈ R

I1
p1
×···× IN

pN , (4.2)

where ij ∈ Npj and j ∈ NN .

From the perspective of the processors, processor pi1,...,iN receives subtensor X i1,...,iN and

contributes into updating the ij-th part of factor U(j), U(j)ij , for all j ∈ NN . At last, we

assume that, at the end of the k-th outer AO iteration,

1We note that both the single-core and the multi-core implementations solve the same problem, thus

problems that are identifiable in single-core environments remain identifiable in multi-core environments and

the solutions, in both cases, are practically the same.
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(a) processor pi1,...,iN knows U
(1)i1

k , U
(2)i2

k , . . . , U
(N)iN

k

(b) all processors know
(
U

(i)
k

)T
U

(i)
k , for all i ∈ NN .

4.1.2 Communication groups

We define certain communication groups, also known as communicators [28], over subsets

of the p processors, which are used for the efficient collaborative implementation of specific

computational tasks, as explained in detail below.

First, we define as Ci,j , for i ∈ NN and j ∈ Npi , to be the (N − 1)–dimensional group of

processors, involving the
∏N
k=1,k 6=i pk processors having the i-th index equal to j, which are

used for the collaborative update of U
(i)j

k . Additionally, we define as Di,J i , for i ∈ NN and

J i ∈ ×
n=1,n6=i

Sn, with Sn = Npn , to be the one-dimensional processor groups, each involving

the pi processors that differ only at the i-th index. Each of these groups is used for the

collaborative computation of
(
U

(j)
k+1

)T
U

(j)
k+1, for j ∈ NN .

4.2 Parallel implementation of AO GTF

4.2.1 Factor update implementation

In this section, we consider the case of updating the factor matrix U
(1)
k . In order to facilitate

our analysis, we introduce the following partitioning of a mode-1 matricization of the tensor

X as

X(1) =

[ (
X1

(1)

)T
· · ·

(
Xp1

(n)

)T ]T
, (4.3)

with Xj
(1) ∈ R

I1
p1
×
∏N

n=2 In , for all j ∈ Np1 . We describe in detail the update of U
(1)
k , which

is achieved via the parallel updates of U
(1)i1

k , for all i1 ∈ Np1 , and consists of the following

stages:

1. Processors in C1,i1 , for all i1 ∈ Np1 , collaboratively compute the I1
p1
×R matrix

M(1)i1 = Xi1
(1)K

(1), (4.4)

and the result is scattered among the processors in the group; thus, each processor in

the group receives I∏N
i=1 pi

successive rows of M(1)i1 . Term M(1)i1 can be computed

collaboratively because

Xi1
(1)K

(1) =

p2∑
i2=1

· · ·
pN∑
iN=1

Xi1,...,iN
(1) (U

(N)iN

k � · · · �U
(2)i2

k ), (4.5)
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where Xi1,...,iN
(1) is the matricization of X i1,...,iN with respect to the first mode. Each

processor pi1,...,in in C1,i1 knows Xi1,...,iN
(1) , U

(2)i2

k , . . . , U
(N)iN

k and computes the corre-

sponding term of (4.5). The sum is computed and scattered among all processors in

C1,i1 via a reduce-scatter operation.

2. Each processor in the group C1,i1 uses the scattered part of M(1)i1 , matrix K(1) and

partial factor U
(1)i1

k , in order to compute the updated part of U
(1)i1

k+1 , via the update

factor algorithm.

3. The updated parts of U
(1)i1

k+1 are all-gathered at the processors of the group C1,i1 , so that

all processors in the group learn the updated factor U
(1)i1

k+1 .

4. By applying an all-reduce operation to
(
U

(1)i1

k+1

)T
U

(1)i1

k+1 , for all i1 ∈ Np1 , on each of

the single-dimensional processor groups D1,J 1 , all p processors learn U
(1)T

k+1U
(1)
k+1.

2

As for the rest of the factors, the updates can be implemented by following analogous steps.

The Euclidean norms of the columns of each factor U
(i)
k appear on the diagonals of

U
(i)T

k U
(i)
k , which is known to all processors. Thus, no communication is necessary for the

normalization of the updated matrix factors.

After the completion of the (k + 1)-st AO iteration, processor pi1,...,iN knows the parts

of the updated and normalized factors, that is,

{
U

(j)ij

k+1

}N
j=1

, as well as

{
U

(j)ij

k

}N
j=1

. It is

now able to compute

{
U

(j)ij
new

}N
j=1

, (see (3.25)). The computation of the cost function fX at

points
{

U
(j)
k+1

}N
j=1

and
{

U
(j)
new

}N
j=1

is implemented collaboratively. Each processing element

computes its local contribution and, via an all-reduce operation over the whole processor grid,

the values of the cost function are computed and become known to all processors, thus, all

processors make the same decision regarding the success or failure of the acceleration step.

4.2.2 Communication cost

We focus on the parallel updates of U
(1)i1

k , for all i1 ∈ Np1 , and present results concerning

the associated communication cost. Analogous results hold for the updates of the remaining

factor matrices U
(j)ij

k , for all j ∈ {2, . . . , N} and ij ∈ Npj .

2In the cases where R ' I1
p1

it seems preferable to compute
(
U

(1)
k+1

)T (
U

(1)
k+1

)
via an all-gather operation

on terms U
(1)i1

k+1 , for all i1 ∈ Np1 , on each of the single-dimensional processor groups D1,J 1 . However, in this

work, we mainly focus on small-rank factorizations, thus, in our communication cost analysis and experiments

we do not present results for this alternative.
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We assume that an m-word message is transferred from one process to another with

communication cost ts + twm, where ts is the latency, or startup time for the data transfer,

and tw is the word transfer time [28].

Communication occurs at three algorithm execution points.

1. The I1
p1
× R matrix M1i1 is computed and scattered among the

∏N
j=2 pj processors of

group C1,i1 , using a reduce-scatter operation, with communication cost [28, §4.2]

Cost11 = ts

 N∑
j=2

pj − (N − 1)

+ tw
I1R

p

 N∏
j=2

pj − 1

 .

2. Processors in C1,i1 learn the updated U
(1)i1

k+1 through an all-gather operation on its up-

dated parts, each of dimension I
p ×R, with communication cost [28, §4.2]

Cost12 = ts

 N∑
j=2

pj − (N − 1)

+ tw
I1R

p

 N∏
j=2

pj − 1

 .

3. Finally,
(
U

(1)
k+1

)T
U

(1)
k+1 is computed by using an all-reduce operation on quantities(

U
(1)i1

k+1

)T
U

(1)i1

k+1 , for all i1 ∈ Np1 , on each single-dimensional processor group D1,J 1 ,

with communication cost [28, §4.3]

Cost13 =
(
ts + twR

2
)

log2 p1. (4.6)

The communication that takes place during the acceleration step involves scalar quantities

and, thus, is ignored.

When we are dealing with large messages, the tw terms dominate the communication cost.

Thus, if we ignore the startup time, the total communication time is

C1 = tw

2I1R

p

 N∏
j=2

pj − 1

+R2 log2 p1


≈ tw

(
2I1R

p1
+R2 log2 p1

)
≈ 2I1R tw

p1
,

(4.7)

with the second approximation being accurate for R � I1
p1

. The presence of p1 in the de-

nominator of the last expression of (4.7) implies that our implementation is scalable in the

sense that, if we double I1, then we can have (approximately) the same communication cost

per processor by doubling p1. Again, analogous results hold for the updates of the remaining

factor matrices U
(j)ij

k , for all j = {2, . . . , N} and ij ∈ Npj .
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4.2.3 The case of Orthogonality Constraints

The update of a matrix factor U
(j)
k under orthogonality constraints deviates from the proce-

dure presented in the previous section. However, it can be achieved via the parallel updates

of U
(j)ij

k , for all ij ∈ Npj , and consists of the following stages:

1. Processors in Cj,J j , for all ij ∈ Npj , collaboratively compute the
Ij
pj
×R matrix

M(j)ij = X
ij
(j)K

(j), (4.8)

by applying an all-reduce operation, since

X
ij
(j)K

(j) =
∑
Cj,ij

Xi1,...,iN
(j)

(
U

(N)iN

k � · · · �U
(j+1)ij+1

k �U
(j−1)ij−1

k+1 � · · · �U
(1)i1

k+1

)
,

where Xi1,...,iN
(j) is the matricization of X i1,...,iN , with respect to the j-th mode.

2. Processors in Dj,J j collaboratively compute the R×R matrix

(
M(j)

)T
M(j) =

pj∑
ij=1

(
M(j)ij

)T
M(j)ij , (4.9)

by applying an all-reduce operation. We notice that at the end of this step, all p

processors know matrix
(
M(j)

)T
M(j).

3. Each processor pi1,...,iN , for all in ∈ Npn and n ∈ NN , computes the updated partial

factor U
(j)ij

k+1 as

U
(j)ij

k+1 = M(j)ij
((

M(j)
)T

M(j)

)− 1
2

. (4.10)

4.2.4 Communication Cost

As for the communication costs of the procedure needed for updating a factor with orthogo-

nality constraints in parallel, since communication occurs at two algorithm execution points,

we have

1. The
Ij
pj
×R matrix M(j)ij is computed among the

∏N
k=1,k 6=j pk processors of group Cj,ij ,

using an all-reduce operation, with communication cost [28, §4.2]

Costj1 =

(
ts + tw

Ij
pj
R

)
log2

 N∏
k=1,k 6=j

pk

 .
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2. Matrix
(
M(j)

)T
M(j) is computed by using an all-reduce operation on

(
M(j)ij

)T
M(j)ij

within each single-dimensional processor group Dj,J j , with communication cost [28,

§4.3]

Cj2 =
(
ts + twR

2
)

log2 pj . (4.11)

When we are dealing with large messages, the tw terms dominate the communication cost.

Thus, if we ignore the startup time, the total communication time, for updating factor U
(j)
k ,

is

Cj = tw

IjR
pj

log2

 N∏
k=1,k 6=j

pk

+R2 log2 pj


≈ tw

IjR
pj

log2

 N∏
k=1,k 6=j

pk

 (4.12)

with the approximation being accurate for R� Ij
pj

. We again observe that our implementation

is scalable in the above mentioned sense.
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Chapter 5

Cuda Implementations

5.1 Implementations on Heterogeneous Platforms using CUDA

5.1.1 A short introduction to Heterogeneous Platforms

A modern heterogeneous computational node consists of multicore CPU sockets and hard-

ware accelerators such as GPUs or even FPGAs. The most common hardware accelerator

are GPUs, used to accelerate the execution of a program section. Before analyzing the ar-

chitecture of a Heterogeneous Platform, we have to focus on each device’s architecture and

characteristics. CPUs and GPUs do not share the same architecture. In general, CPUs

are classified as Single Instruction Single Data (SISD) when a single core executes a single

instruction stream on single data and Single Instruction Multiple Data (SIMD) if a single

core executes one instruction stream which operates on multiple data. Modern CPUs with

multiple cores are classified as Multiple Instructions Multiple Data (MIMD), where each core

executes an independent instruction which performs on single or on multiple data.

In contrast, GPUs are classified as Single Instruction Multiple Threads (SIMT), a com-

bination of SIMD and multithreading execution model. Furthermore, CPUs and GPUs have

different type of cores. Modern CPUs have multiple large cores, where each core is designed

with a complicated control and is optimized to execute sequential tasks. On the contrary,

GPUs have many cores (often hundreds or even thousands) smaller in size, with a simpler

control and are ideal for data-parallel tasks. Also, GPU cores can handle many more threads

than the CPU ones due to the fact that they are extremely light-weight and are organized in

groups making them more easy to schedule.

A GPU, often called device, operates in conjunction with a CPU, also referred as host.

In a program implemented on Heterogeneous Platforms, the host is responsible for data

initialization, synchronization across all devices, small data size computations etc. On the
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other hand, devices are responsible for large data size computations, where parallelism can

be highly exploited.

5.1.2 Available Frameworks for Heterogeneous Platforms

There are many frameworks for writing programs that execute across heterogeneous platforms,

but the most common are OpenCL and CUDA (Compute Unified Device Architecture). In

both platforms, a program consists of two parts, the host code, which runs on CPU and device

code, also referred to as “kernel,” which runs on GPU.

OpenCL is an open standard that runs on any hardware type and by multiple vendors,

which is a huge advantage compared to CUDA, which is developed and compatible only to

NVIDIA GPUs. On the other hand, CUDA promises speedup on runtime performance, due

to the fact that kernels are compiled once and not at runtime execution. So the generated

code will be optimized to the target GPU, exploiting its unique features.

CUDA can be described shortly as a general-purpose parallel computing platform and

application programming interface (API). Using CUDA, one can access the GPU for compu-

tation, likewise it has been done on the CPU. This platform is designed to work with plenty

of programming languages, such as C, C++, Python, Fortran etc. It comes also with plenty

of math libraries like CUBLAS (Basic Linear Algebra Subroutines), CUFFT (Fast Fourier

Transform) and many more, increasing performance especially when operating on large data.

The aforementioned advantages of CUDA over OpenCL, led us to choose CUDA for our

implementation.
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Chapter 6

Numerical experiments

6.1 NTF Problem with third-order tensors

6.1.1 Matlab environment

In this subsection, we test the effectiveness of the Nesterov-based AO NTF algorithm with

numerical experiments performed in Matlab.

At first, we compare the performance of the algorithm we propose in Algorithm 2 for the

solution of the MNLS problem (2.10) with that of the algorithm proposed in [15] and [16]

(for the moment, we ignore the proximal term, thus, we put λ = 0 in Algorithm 2). As

we mentioned in subsection 2.2.2, if matrix BTB is rank deficient, that is, if µ = 0, then

both algorithms have practically the same behavior. However, if BTB is full-rank, then the

two algorithms exhibit different behavior. In order to illustrate their difference, we perform

the following experiment. We generate random matrices X ∈ Rm×n and B ∈ Rn×r with

m = 300, n = 200, and r = 100, with independent and identically distributed (i.i.d) elements,

taking values uniformly at random in the interval [0, 1]. Then, we solve problem (2.10) with

the two algorithms, starting from the same random point. The terminating conditions are

determined by parameters δ1 = δ2 = 10−3. In Figure 6.1, we plot the number of iterations

needed by the two algorithms to converge over 100 independent realizations. We observe

that the Nesterov-type algorithm which exploits strong convexity is much more efficient than

the algorithm which does not. Thus, in the sequel, we shall not present performance results

involving the algorithm of [15].

Next, we compare the performance of a Matlab implementation of the proposed non-

negative tensor factorization algorithm with routines parafac of the n-way toolbox [25] and

sdf nls of tensorlab [29]. Our aim is to provide some general observations about the dif-

ficulty of the problems and the behavior of the algorithms and not a strict ranking of the
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Figure 6.1: Number of iterations to convergence for (blue line) Algorithm 2, with λ = 0, and

(red line) algorithm of [15].

algorithms.1

The parafac routine essentially implements an AO NTF algorithm, where each MNLS

problem is solved via the function fastnnls, which is based on [30, §23.3]. It also incorporates

the normalization and acceleration schemes briefly described in Section ??. The sdf nls

routine for NTF first applies a “squaring” transformation to the problem variables [31] and

then solves an unconstrained problem via an AOO-based Gauss-Newton method.

In our experiments with synthetic data, we focus on the cputime and the Maximum,

over the three latent factors, Relative Factor Error (MRFE), which is computed via function

cpd err of tensorlab.

In the numerical experiments we present in this subsection, we choose the parameter values

that determine the terminating conditions so that all algorithms achieve (approximately)

the same average MRFEs (of course, this is not always possible with one set of parameter

values). Thus, we set Tol = 10−5 for parafac, TolFun = 10−9 for sdf nls, and δ1 and

δ2, which determine the terminating conditions for the Nesterov-based MNLS, are set to

δ1 = δ2 = 10−2. The outer iterations of the Nesterov-based AO NTF terminate if the relative

1For our experiments, we run Matlab 2014a on a MacBook Pro with a 2.5 GHz Intel Core i7 Intel processor

and 16 GB RAM.

33



changes of the normalized latent factors become sufficiently small, that is,

‖MN
k+1 −MN

k ‖F
‖MN

k ‖F
< tolAO, for M = A,B,C, (6.1)

where tolAO = 10−4.

The proximal parameter λ is computed as

λ := g(L, µ) =


10µ, if L

µ > 106,

µ, if 106 > L
µ > 104,

µ
10 , if 104 > L

µ .

(6.2)

All algorithms start from the same triple of random matrices, (A0,B0,C0), which have i.i.d.

elements, uniformly distributed in [0, 1].

True latent factors with i.i.d. elements

We start with synthetic data by assuming that the true latent factors consist of i.i.d. elements,

uniformly distributed in [0, 1]. The additive noise is zero-mean white Gaussian with variance

σ2N .

In Table 6.3, we present the average, over 10 realizations, cputime and MRFE for various

tensor “shapes,” ranks R = 15, 50, and noise variances σ2N = 10−2, 10−4. We observe that the

Nesterov-based AO NTF is very competitive in all cases, in the sense that it converges fast,

achieving very good accuracy in most of the cases.

True latent factors with correlated elements

It is well-known that, if some columns of (at least) one latent factor are almost collinear,

convergence of the AO algorithm tends to be slow (these cases are known as “bottlenecks”)

[23]. In the sequel, we test the behavior of the three algorithms in cases with one, two, and

three bottlenecks. More specifically, we generate the true latent factors with i.i.d. elements

as before and we create a single “bottleneck” by modifying the last two columns of one latent

factor so that each becomes highly correlated with another column of the same latent factor

(the correlation coefficient is larger that 0.98). In an analogous way, we generate double and

triple “bottlenecks.”

In Table 6.2, we focus on the case I = J = K = 300, R = 50, σ2N = 10−4, and present

the average, over 10 realizations, cputime and MRFE. We observe that the problems become

more difficult as the number of bottlenecks increases, in the sense that both the cputime

and the MRFE increase as the number of bottlenecks increases. Again, the Nesterov-based

AO NTF algorithm is very efficient in all cases. Analogous observations have been made in

extensive numerical experiments with other tensor shapes and noise levels.

34



Table 6.1: Average, over 10 realizations, cputime and maximum relative factor error for

Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with i.i.d. entries,

uniform in [0, 1]

Size R σ2
N AO-Nesterov sdf nls parafac

cputime MRFE× 104 cputime MRFE× 104 cputime MRFE× 104

1000× 100× 100 15 10−2 29 80 56 79 44 85

10−4 27 10 52 13 53 8

50 10−2 77 89 217 91 191 91

10−4 76 13 221 24 251 9

500× 500× 100 15 10−2 63 35 126 37 72 42

10−4 64 5 132 10 105 4

50 10−2 119 39 347 43 250 42

10−4 124 8 331 20 327 5

300× 300× 300 15 10−2 72 27 84 27 70 38

10−4 71 5 87 7 106 3

50 10−2 114 31 171 32 230 34

10−4 119 8 174 13 279 4

Table 6.2: Average, over 10 realizations, cputime and maximum relative factor error for

Nesterov-based AO NTF, sdf nls, and parafac, for true latent factors with correlated entries

Size R σ2
N Bottleneck AO-Nesterov sdf nls parafac

cputime MRFE cputime MRFE cputime MRFE

300× 300× 300 50 10−4 A 132 0.0074 194 0.0075 356 0.0073

A,B 204 0.0116 254 0.0195 412 0.0122

A,B,C 271 0.0206 370 0.1007 779 0.0168

6.1.2 Parallel environment - MPI

We now present results obtained from the MPI implementation described in detail in Section

4.2, for nonnegative tensor factorization of third-order tensors. The program is executed on

a DELL PowerEdge R820 system with SandyBridge - Intel(R) Xeon(R) CPU E5 − 4650v2

(in total, 16 nodes with 40 cores each at 2.4 Gz) and 512 GB RAM per node. The matrix

operations are implemented using routines of the C++ library Eigen (matrix module) [32].

We assume a noiseless tensor X , whose true latent factors have i.i.d elements, uniformly

distributed in [0, 1]. The terminating conditions for MNLS are determined by values δ1 =

δ2 = 10−2.
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The AO terminates at iteration k if (recall that tensor X is noiseless)

RFE(Ak,Bk,Ck) < 10−3.

We test the behavior of our implementation for various tensor sizes and rank R = 15, 50, 100.

The performance metric we compute is the speedup attained using p = pA×pB×pC processors.

In Figures 6.2-6.4, we plot the speedup for the following cases (in all cases with synthetic

data, the tensor X has eight billion entries):

1. Cubic tensor: we set I = J = K = 2000 and implement the algorithm on a grid with

pA = pB = pC = 3
√
p, for p = 1, 8, 27, 64, 125, 216, 343, 512.

2. One large dimension: we set I = 400, J = 400, K = 50000 and implement the algorithm

on a grid with pA = pB = 1, pC = p, for p = 1, 8, 27, 64, 125, 216, 343, 512.

3. Two large dimensions: we set I = 5000, J = 320, K = 5000 and implement the

algorithm on a grid with pA = pC =
√
p, pB = 1, for p = 1, 9, 36, 64, 121, 225, 361, 529.

We observe that, in all cases, we attain significant speedup, which is rather insensitive to the

tensor shape and rank.
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Figure 6.2: Speedup achieved for a 2000 × 2000 × 2000 tensor with p cores, for p =

1, 8, 27, 64, 125, 216, 343, 512.
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Figure 6.3: Speedup achieved for a 400 × 400 × 50000 tensor with p cores, for p =

1, 8, 27, 64, 125, 216, 343, 512.

6.2 Numerical UOTF

6.2.1 Numerical experiments

In this section, we present results obtained from the MPI implementation described in detail

in Section 4.2 and subsection 4.2.3. The program is executed on a DELL PowerEdge R820

system with SandyBridge - Intel(R) Xeon(R) CPU E5 − 4650v2 (in total, 16 nodes with 40

cores each at 2.4 Gz) and 512 GB RAM per node. The matrix operations are implemented

using routines of the C++ library Eigen (matrix module) [32]. We assume a noiseless tensor

X , whose true latent factors Ao and Co have i.i.d elements, uniformly distributed in [0, 1],

while true latent factor Bo was produced from the left singular vectors of a matrix with i.i.d

elements, uniformly distributed in [0, 1].

The AO terminates at iteration k if

RFE(Ak,Bk,Ck) < 10−3,

where

RFE (A,B,C) :=
‖X − 〚A,B,C〛‖F

‖X‖F
. (6.3)

We test the behavior of our implementation for various tensor sizes and rank R = 15, 50, 100.

The performance metric we compute is the speedup attained using p = pA×pB×pC processors.
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Figure 6.4: Speedup achieved for a 5000 × 320 × 5000 tensor with p cores, for p =

1, 9, 36, 64, 121, 225, 361, 529.

In Figures 6.5–6.7, we plot the speedup for the following cases2:

1. Cubic tensor: we set I = J = K = 2000 and implement the algorithm on a grid with

pA = pB = pC = 3
√
p, for p = 1, 8, 27, 64, 125, 216, 343.

2. Two large dimensions: we set I = 5000, J = 320, K = 5000 and implement the

algorithm on a grid with pA = pC =
√
p, pB = 1, for p = 1, 4, 9, 36, 64, 121, 225, 361.

3. One large dimension: we set I = 400, J = 50000, K = 400 and implement the algorithm

on a grid with pA = pC = 1, pB = p, for p = 1, 8, 27, 64, 125, 216, 343.

In order to highlight the need of parallel processing for the decomposition of very large tensors,

we quote the serial execution times (p = 1) in Table 6.3. We observe that, in all cases, we

attain significant speedup, which is rather insensitive to the tensor shape and rank.

2To the best of our knowledge, there is no other parallel algorithm solving the UOTF problem, thus, we

cannot compare with any competing state-of-the art algorithm.
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Table 6.3: Execution times for p = 1 over different tensor sizes and ranks

Size R Time of Execution (sec)

2000× 2000× 2000 15 6, 272.35

50 14744.09

100 34381.45

5000× 320× 5000 15 7, 545.13

50 17908.56

100 42628.99

400× 5000× 400 15 6, 434.69

50 17, 790.75

100 36, 599.60

6.3 Solving the NTF problem with Eigen’s Tensor module

6.3.1 Parallel environment - MPI

We now present results obtained from the MPI implementation described in detail in Section

4.2. The program is executed on a DELL PowerEdge R820 system with SandyBridge -

Intel(R) Xeon(R) CPU E5 − 4650v2 (in total, 16 nodes with 40 cores each at 2.4 Gz) and

490 GB RAM per node. The tensor and matrix operations are implemented using routines

of the C++ library Eigen’s unsupported tensor module [32]. We assume a noiseless tensor X ,

whose true latent factors have i.i.d elements, uniformly distributed in [0, 1]. The terminating

conditions for MNLS are determined by values δ1 = δ2 = 10−2. In addition, we set the limit

for the number of AO iterations to 10, and for the Nesterov algorithm iterations to 50.

The AO terminates at iteration k if (recall that tensor X is noiseless)

RFE(U
(1)
k ,U

(2)
k , . . . ,U

(N)
k ) < 10−3, (6.4)

where

RFE(U(1),U(2), . . . ,U(N)) :=

∥∥X − 〚U(1),U(2), . . . ,U(N)〛
∥∥
F

‖X‖F
(6.5)

We test the behavior of our implementation for various tensor orders and rank R = 10, 50.

The performance metric we compute is the speedup attained using p =
N∏
i=1

pi processors.

In the sequel, we plot the speedup for the following cases (in all cases with synthetic data,

the tensor X has one billion entries):

1. Third order tensor: we set I = J = K = 1000.

39



0 50 100 150 200 250 300 350

Number of Cores

0

50

100

150

200

250

300

350

S
p

e
e
d

u
p

R = 15

R = 50

R = 100

Linear Speedup

Figure 6.5: UOTF: speedup achieved for a 2000 × 2000 × 2000 tensor with p cores, for

p = 1, 8, 27, 64, 125, 216, 343.

2. Fourth order tensor: we set I = J = K = L = 178.

3. Fifth order tensor: we set I = J = K = L = M = 64.

The number of processors used in the trials were p = 1, 2, 4, 8, 16, 32, 64, 128, 256. We first

present the formation of the grid for the various experiments carried out:

Plots of the speedup for the cases described above are presented next:
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Figure 6.6: UOTF: speedup achieved for a 5000 × 320 × 5000 tensor with p cores, for p =

1, 4, 9, 36, 64, 121, 225, 361.
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Figure 6.7: UOTF: speedup achieved for a 400 × 50000 × 400 tensor with p cores, for p =

1, 8, 27, 64, 125, 216, 343.
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Table 6.4: Grid formations used.

Cores Third order tensor Fourth order tensor Fifth order tensor

1 1× 1× 1 1× 1× 1× 1 1× 1× 1× 1× 1

2 2× 1× 1 2× 1× 1× 1 2× 1× 1× 1× 1

4 2× 2× 1 2× 2× 1× 1 2× 2× 1× 1× 1

8 2× 2× 2 2× 2× 2× 1 2× 2× 2× 1× 1

16 4× 2× 2 2× 2× 2× 2 2× 2× 2× 2× 1

32 4× 4× 2 4× 2× 2× 2 2× 2× 2× 2× 2

64 4× 4× 4 4× 4× 2× 2 4× 2× 2× 2× 2

128 8× 4× 4 4× 4× 4× 2 4× 4× 2× 2× 2

256 8× 8× 4 4× 4× 4× 4 4× 4× 4× 2× 2
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Figure 6.8: Speedups for R = 50. The number of cores p takes the values p =

1, 2, 4, 8, 16, 32, 64, 128, 256, while the third-order tensor has dimensions 1000 × 1000 × 1000,

the fourth-order has dimensions 178 × 178 × 178 × 178 and the fifth-order has dimensions

64× 64× 64× 64× 64.
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Figure 6.9: Speedups for R = 10. The number of cores p takes the values p =

1, 2, 4, 8, 16, 32, 64, 128, 256, while the third - order tensor has dimensions 1000× 1000× 1000,

the fourth-order has dimensions 178 × 178 × 178 × 178 and the fifth-order has dimensions

64× 64× 64× 64× 64.
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Chapter 7

Conclusion

In this report, we considered the problem of dense tensor factorization assuming that the fac-

tors are unconstrained, nonnegative, orthogonal, or sparse. We adopted the optimal first-order

framework and developed efficient algorithms. We implemented the algorithms in distributed

environments, using MPI, and assessed the achieved speedup. We observed that our imple-

mentations offer significant speedup, making our approach very effective, and rendering our

algorithms very strong candidates for the solution of very large dense tensor factorization

problems.

Our plan is to proceed to the sparse case, and develop and implement efficient algorithms

for this very important case.

Our results will be submitted for publication to top international journals and confer-

ences.
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